skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multipath Cluster Analysis for Device-to-Device Terahertz Outdoor Measurements
Since the terahertz frequency band (0.1–1 THz) has attracted considerable attention for the upcoming sixth-generation (6G) wireless communication systems, accurate models for multipath propagation in this frequency range need to be established. Such models advantageously use the fact that multi-path components (MPCs) occur typically in clusters, i.e., groups of MPCs that have similar delays and angles. In this paper, we first analyze the limitations of a widely used clustering algorithm, Kernel-Power-Density (KPD), in evaluating an extensive THz outdoor measurement campaign at 145–146 GHz, particularly its inability to detect small clusters. We introduce a modified version, which we term multi-level KPD (ML-KPD), iteratively applying KPD to detect whether a cluster determined in the previous round is made up of multiple clusters. We first apply the method to synthetic channels to demonstrate its efficacy and select suitable values for the adaptive hyperparameters. Then, multi-level KPD is applied to our channel measurements in line-of-sight (LOS) and non-line-of-sight (NLOS) environments to determine statistics for the number of clusters and the cluster spreads.  more » « less
Award ID(s):
2133655
PAR ID:
10561986
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-7423-0
Page Range / eLocation ID:
105 to 110
Format(s):
Medium: X
Location:
Washington, DC, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Multi-path components (MPCs) in wireless channels generally occur in clusters, i.e., groups of MPCs that have similar delay/angle characteristics. However, when those clusters are widely separated and have significantly different power, highresolution parameter extraction (HRPE) algorithms based on serial interference cancellation, such as CLEAN, can miss some of the weaker clusters because they concentrate the path search in the strongest cluster. This effect can occur particularly in the presence of calibration error and/or diffuse scattering. To solve this problem, we propose a heuristic modification, Regional CLEAN (R-CLEAN), that employs cluster identification in the Fourier domain and limits the number of MPCs per cluster. We first demonstrate the effect, and the effectiveness of our proposed algorithm, on synthetic channels with calibration error or diffuse scattering. We then demonstrate it with a THz Multiple-Input- Multiple-Output (MIMO) measurement at 145 - 146 GHz. The proposed optimization and algorithm can thus be an essential step towards evaluating channels with multiple clusters. 
    more » « less
  2. null (Ed.)
    Millimeter-wave (mmWave) and Terahertz (THz) will be used in the sixth-generation (6G) wireless systems, especially for indoor scenarios. This paper presents an indoor three-dimensional (3-D) statistical channel model for mmWave and sub-THz frequencies, which is developed from extensive channel propagation measurements conducted in an office building at 28 GHz and 140 GHz in 2014 and 2019. Over 15,000 power delay profiles (PDPs) were recorded to study channel statistics such as the number of time clusters, cluster delays, and cluster powers. All the parameters required in the channel generation procedure are derived from empirical measurement data for 28 GHz and 140 GHz line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. The channel model is validated by showing that the simulated root mean square (RMS) delay spread and RMS angular spread yield good agreements with measured values. An indoor channel simulation software is built upon the popular NYUSIM outdoor channel simulator, which can generate realistic channel impulse response, PDP, and power angular spectrum. 
    more » « less
  3. ABSTRACT We investigate the strong-lensing cluster Abell 370 (A370) using a wide Integral Field Unit (IFU) spectroscopic mosaic from the Multi-Unit Spectroscopic Explorer (MUSE). IFU spectroscopy provides significant insight into the structure and mass content of galaxy clusters, yet IFU-based cluster studies focus almost exclusively on the central Einstein-radius region. Covering over 14 arcmin2, the new MUSE mosaic extends significantly beyond the A370 Einstein radius, providing, for the first time, a detailed look at the cluster outskirts. Combining these data with wide-field, multi-band Hubble Space Telescope (HST) imaging from the BUFFALO project, we analyse the distribution of objects within the cluster and along the line of sight. Identifying 416 cluster galaxies, we use kinematics to trace the radial mass profile of the halo, providing a mass estimate independent from the lens model. We also measure radially averaged properties of the cluster members, tracking their evolution as a function of infall. Thanks to the high spatial resolution of our data, we identify six cluster members acting as galaxy–galaxy lenses, which constrain localized mass distributions beyond the Einstein radius. Finally, taking advantage of MUSE’s 3D capabilities, we detect and analyse multiple spatially extended overdensities outside of the cluster that influence lensing-derived halo mass estimates. We stress that much of this work is only possible thanks to the robust, extended IFU coverage, highlighting its importance even in less optically dense cluster regions. Overall, this work showcases the power of combining HST + MUSE, and serves as the initial step towards a larger and wider program targeting several clusters. 
    more » « less
  4. Abstract—Millimeter-wave (mmWave) and Terahertz (THz) will be used in the sixth-generation (6G) wireless systems, especially for indoor scenarios. This paper presents an indoor three-dimensional (3-D) statistical channel model for mmWave and sub-THz frequencies, which is developed from extensive channel propagation measurements conducted in an office building at 28 GHz and 140 GHz in 2014 and 2019. Over 15,000 power delay profiles (PDPs) were recorded to study channel statistics such as the number of time clusters, cluster delays, and cluster powers. All the parameters required in the channel generation procedure are derived from empirical measurement data for 28 GHz and 140 GHz line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. The channel model is validated by showing that the simulated root mean square (RMS) delay spread and RMS angular spread yield good agreements with measured values. An indoor channel simulation software is built upon the popular NYUSIM outdoor channel simulator, which can generate realistic channel impulse response, PDP, and power angular spectrum. Index Terms—Millimeter-Wave; Terahertz; Indoor Office; Channel Measurement; Channel Modeling; Channel Simulation; 5G; 6G 
    more » « less
  5. Abstract—This letter provides a comparison of indoor radio propagation measurements and corresponding channel statistics at 28, 73, and 140 GHz, based on extensive measurements from 2014-2020 in an indoor office environment. Side-by-side comparisons of propagation characteristics (e.g., large-scale path loss and multipath time dispersion) across a wide range of frequencies from the low millimeter wave band of 28 GHz to the sub-THz band of 140 GHz illustrate the key similarities and differences in indoor wireless channels. The measurements and models show remarkably similar path loss exponents over frequencies in both line-of-sight (LOS) and non-LOS (NLOS) scenarios, when using a one meter free space reference distance, while the multipath time dispersion becomes smaller at higher frequencies. The 3GPP indoor channel model overestimates the large-scale path loss and has unrealistic large numbers of clusters and multipath components per cluster compared to the measured channel statistics in this letter. Index Terms—mmWave, THz, channel models, multipath time dispersion, 5G, 6G, large-scale path loss, 3GPP InH. 
    more » « less