skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Little iLocater: paving the way for iLocater
ABSTRACT Diffraction-limited radial-velocity instruments offer a pathway towards improved precision and stability, and the exploration of new parameter spaces at high spatial and spectral resolution. However, achieving the necessary performance requires careful instrument design and considerable on-sky testing. We describe the design and construction of ‘Little iLocater’ (Lili), a compact spectrograph that has been used to validate the performance of the front-end fibre-injection system of the iLocater spectrograph. We present the design, assembly, and performance using on-sky data obtained at the Large Binocular Telescope (LBT), including extraction of spectra from standard stars, testing of the atmospheric dispersion corrector to elevations of 40°, and spatially resolved spectra from close companion systems. These results show the front-end fibre-injection system is performing as expected and is indicative of iLocater’s capabilities once installed at the LBT.  more » « less
Award ID(s):
2108603
PAR ID:
10562035
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
536
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 2421-2432
Size(s):
p. 2421-2432
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Enabling efficient injection of light into single-mode fibres (SMFs) is a key requirement in realizing diffraction-limited astronomical spectroscopy on ground-based telescopes. SMF-fed spectrographs, facilitated by the use of adaptive optics (AO), offer distinct advantages over comparable seeing-limited designs, including higher spectral resolution within a compact and stable instrument volume, and a telescope independent spectrograph design. iLocater is an extremely precise radial velocity (EPRV) spectrograph being built for the Large Binocular Telescope (LBT). We have designed and built the front-end fibre injection system, or acquisition camera, for the SX (left) primary mirror of the LBT. The instrument was installed in 2019 and underwent on-sky commissioning and performance assessment. In this paper, we present the instrument requirements, acquisition camera design, as well as results from first-light measurements. Broad-band SMF coupling in excess of 35 per cent (absolute) in the near-infrared (0.97–1.31 $${\mu {\rm m}}$$) was achieved across a range of target magnitudes, spectral types, and observing conditions. Successful demonstration of on-sky performance represents both a major milestone in the development of iLocater and in making efficient ground-based SMF-fed astronomical instruments a reality. 
    more » « less
  2. Abstract Precision radial velocity spectrographs that use adaptive optics (AO) show promise to advance telescope observing capabilities beyond those of seeing-limited designs. We are building a spectrograph for the Large Binocular Telescope (LBT) named iLocater that uses AO to inject starlight directly into single mode fibers. iLocater's first acquisition camera system (the SX camera), which receives light from one of the 8.4 m diameter primary mirrors of the LBT, was initially installed in summer 2019 and has since been used for several commissioning runs. We present results from first-light observations that include on-sky measurements as part of commissioning activities. Imaging measurements of the bright B3IV star 2 Cygni (V= 4.98) resulted in the direct detection of a candidate companion star at an angular separation of onlyθ = 70 mas. Follow-up AO measurements using Keck/NIRC2 recover the candidate companion in multiple filters. AnR ≈ 1500 miniature spectrograph recently installed at the LBT named Lili provides spatially resolved spectra of each binary component, indicating similar spectral types and strengthening the case for companionship. Studying the multiplicity of young runaway star systems like 2 Cygni (36.6 ± 0.5 Myr) can help to understand formation mechanisms for stars that exhibit anomalous velocities through the Galaxy. This on-sky demonstration illustrates the spatial resolution of the iLocater SX acquisition camera working in tandem with the LBT AO system; it further derisks a number of technical hurdles involved in combining AO with Doppler spectroscopy. 
    more » « less
  3. Geyl, Roland; Navarro, Ramón (Ed.)
    The optical fiber integral field unit (IFU) built to feed the near infrared (NIR) spectrograph for the 11-meter Southern African Large Telescope (SALT) has undergone prototyping and rigorous performance testing at Wash- burn Astronomical Laboratories of the University of Wisconsin-Madison Astronomy Department. The 43 m length of 256 fibers which make up the object and sky arrays and spares are routed from the SALT payload down into the spectrograph room in four separate cables. The IFU covers 344 arcsec2 on the sky, with the object array spanning a 552 arcsec2 near-rectangular area at roughly 56% fill-factor. Companion papers describe the mechanical design of the fiber cable that mitigates potential sources of mechanical strain on the optical fiber (Smith et al.) and details of the spectrograph (Wolf et al.). Here we present the results of the performance testing of various test cables as well as performance testing and end-to-end mapping of the fully-assembled science cable. The fiber optics experience an extreme temperature gradient at the ingress to the instrument enclosure held at -40 ◦C during operation. We find an increase in focal ratio degradation (FRD) when holding progressively longer lengths of test fiber at reduced temperature. However, we confirm that this temperature dependent FRD is negligible for our designed length of cold fiber. We also find negligible contributions to FRD from the rubber seal that breaches the room temperature strain relief box and the cold instrument enclosure. Our measure- ments characterize performance including the effects of internal fiber inhomogeneities, stress induced from fiber handling and termination, as well as any imperfections from end-polishing. We present the room-temperature laboratory performance measurements of the fully-assembled science cable; the effective total throughput the fiber cable delivers to the spectrograph collimator is 81±2.5% across all fibers accounting for all losses. 
    more » « less
  4. ABSTRACT In the framework of the ALOHA (Astronomical Light Optical Hybrid Analysis) project, we have implemented a fibre-linked interferometer connecting two telescopes of the CHARA (Center for High Angular Resolution Astronomy) array to the recombination beam facility using servo controlled hectometric outdoor fibres (240 m). During two consecutive nights, on-sky fringes at 810 nm were recorded on the star Vega (mag 0), with servo control of the fibre lengths. The optical path difference was set close to zero using internal fringes found before the on-sky observations. The repeatability of the delay line position offset between internal and on-sky fringes was less than 0.2 mm. The efficiency of the servo control systems has been demonstrated, leading to an enhancement of the signal-to-noise ratio from 68.9 with the servo off to 91.6 with the servo on. This result is a cornerstone for the ALOHA project goal of interferometry at 3.5 $$\mu$$m and a seminal step for the future kilometric infrared fibre-linked interferometer at CHARA. 
    more » « less
  5. Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)
    We present a compact, double-pass cross-dispersed echelle spectrograph that is tailored specifically to cover the 383 nm to 403 nm spectral range and record R∼16,000 spectra of the stellar chromospheric Ca II H and K lines. This `H and K' spectrometer was developed as a subsystem of the Keck Planet Finder (KPF), which is an extremely precise optical (440 - 870 nm) radial velocity spectrograph for Keck I, scheduled for commissioning Fall 2022, with the science objective of measuring precise masses of exoplanets. The H and K spectrometer will observe simultaneously with KPF to independently track the chromospheric activity of the host stars that KPF observes, which is expected to dominate the KPF measurement floor over long timescales. The H and K Spectrometer is fiber fed from the KPF fiber injection unit with total throughput of 4-7% (top of telescope to CCD) over its operating spectral range. Here we detail the optical design trade offs, mechanical design, and first results from alignment and integration testing. 
    more » « less