The realized niche of many sessile intertidal organisms is constrained by different stressors that set boundaries for their distribution based on tidal elevation. Higher tidal elevation increases desiccation risk but can provide a refuge from predation. Conversely, deeper water increases feeding time and growth but also increases vulnerability to benthic predators. Eastern oystersCrassostrea virginicaharden their shells in response to predator cues, which reduces their mortality from predation. We performed a field study to investigate if this defense mechanism could be manipulated to expand their realized niche and increase space for oyster survival and growth. We raised oysters in the presence of predators (blue crabsCallinectes sapidus) or in no-predator controls, measured changes in shell morphology, and then monitored oyster survival at different tidal elevations across 7 locations with different predator and salinity regimes. Oyster survival was significantly higher at the highest tidal elevations tested. Exposure to predators before deployment also significantly increased shell hardness and survival, with intertidal oysters experiencing greater improvement in survival from cue exposure than subtidal oysters. Intertidal placement (>15% exposure time) had larger effects on survival than predator exposure, but predator exposure increased oyster survival at all tidal elevations, suggesting that predator induction could help oysters both deter predators and resist abiotic stressors like desiccation, and perhaps increase the spatial areas where oysters can be restored.
more »
« less
Exploring high intertidal refugia as an approach for the restoration of an intertidal oyster
Marine organisms frequently inhabit intertidal zones that serve as refuges from predation and competition but are not optimal physiologically. Restoration practitioners working with intertidal species may similarly have to consider whether restoration success will be greater where conditions are more benign (usually lower in the intertidal) or where negative biotic interactions are reduced (usually higher in the intertidal). In cases where a target species has greater desiccation tolerance than its enemies, restoration may be more successful higher in the intertidal zone, despite potential performance trade-offs. In many US West Coast estuaries, non-native drill species can decimate native oyster populations, posing a challenge to restoration. Given that native Olympia oystersOstrea luridashould be better able to withstand tidal emersion than the non-native Atlantic oyster drillUrosalpinx cinerea, we explored using the high intertidal as a refuge from predation as a potential restoration technique. Using surveys and a field experiment, we investigated the recruitment, growth, and survival of oysters as well as drill abundance and predation over 3 tidal elevations. Oysters recruited and survived equally well at +0.1, +0.5, and +0.8 m mean lower low water, but juvenile oyster growth decreased with increasing elevation. In our experiment, predation on oysters was lower at the highest elevation than at low and mid elevations, but in natural populations there was a near complete absence ofO. luridaat any elevation whereU. cinereawas present. This suggests that a higher tidal elevation refuge is not a viable approach for oyster restoration in our study area.
more »
« less
- Award ID(s):
- 2023571
- PAR ID:
- 10562271
- Publisher / Repository:
- Inter-Research Science Publisher
- Date Published:
- Journal Name:
- Marine Ecology Progress Series
- Volume:
- 738
- ISSN:
- 0171-8630
- Page Range / eLocation ID:
- 119 to 132
- Subject(s) / Keyword(s):
- Olympia oysters Ostrea lurida Urosalpinx cinerea Predation Intertidal zonation Refuge Restoration
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
NA (Ed.)The realized niche of many sessile intertidal organisms is constrained by different stressors that set boundaries for their distribution based on tidal elevation. Higher tidal elevation increases desiccation risk but can provide a refuge from predation. Conversely, deeper water increases feeding time and growth but also increases vulnerability to benthic predators. Eastern oysters Crassostrea virginica harden their shells in response to predator cues, which reduces their mortality from predation. We performed a field study to investigate if this defense mechanism could be manipulated to expand their realized niche and increase space for oyster survival and growth. We raised oysters in the presence of predators (blue crabs Callinectes sapidus) or in nopredator controls, measured changes in shell morphology, and then monitored oyster survival at different tidal elevations across 7 locations with different predator and salinity regimes. Oyster survival was significantly higher at the highest tidal elevations tested. Exposure to predators before deployment also significantly increased shell hardness and survival, with intertidal oysters experiencing greater improvement in survival from cue exposure than subtidal oysters. Intertidal placement (>15% exposure time) had larger effects on survival than predator exposure, but predator exposure increased oyster survival at all tidal elevations, suggesting that predator induction could help oysters both deter predators and resist abiotic stressors like desiccation, and perhaps increase the spatial areas where oysters can be restoredmore » « less
-
Oysters,Crassostrea virginica, are economically and ecologically valuable but have severely declined, and restoration is needed. As with the restoration and aquaculture of many shellfish species, restored oyster reefs are often impeded by predation losses, reducing restoration success and restricting locations where restored reefs are viable. Like many organisms, shellfish can modify their morphology to reduce predation risk by detecting and responding to chemical signals emanating from predators and injured prey. Oysters grow heavier, stronger shells in response to predation risk cues, which improves their survival. We tested if using predator cues to trigger shell hardening in oysters could be performed over a scale suitable for oyster reef restoration and improve oyster survival long‐term. We constructed an intertidal oyster reef using oysters grown in a nursery for 4 weeks while exposed to either exudates from Blue crab (Callinectes sapidus) predators or grown in controls without predator cues. Oysters grown with predators were 65% harder than those grown in controls, and after 1 year in the field, had a 60% increase in survival. Predation losses on the restored reef were significant, and the benefit of predator induction for survival was highest at intermediate tidal elevations, presumably due to intermediate levels of predation and abiotic stress. Our results suggest that manipulating the morphology of cultivated or restored species can be an effective tool to improve survival in habitats where consumers impede restoration success.more » « less
-
Established non-native species can have significant impacts on native biodiversity without any possibility of complete eradication. In such cases, one management approach is functional eradication, the reduction of introduced species density below levels that cause unacceptable effects on the native community. Functional eradication may be particularly effective for species with reduced dispersal ability, which may limit rates of reinvasion from distant populations. Here, we evaluate the potential for functional eradication of introduced predatory oyster drills (Urosalpinx cinerea) using a community science approach in San Francisco Bay. We combined observational surveys, targeted removals, and a caging experiment to evaluate the effectiveness of this approach in mitigating the mortality of prey Olympia oysters (Ostrea lurida), a conservation and restoration priority species. Despite the efforts of over 300 volunteers that removed over 30,000 oyster drills, we report limited success. We also found a strong negative relationship between oyster drills and oysters, showing virtually no coexistence across eight sites. At experimental sites, there was no effect of oyster drill removal on oyster survival in a caging experiment, but strong effects of caging treatment on oyster survival (0 and 1.6% survival in open and partial cage treatments, as compared to 89.1% in predator exclusion treatments). We conclude that functional eradication of this species requires significantly greater effort and may not be a viable management strategy in this system. We discuss several possible mechanisms for this result with relevance to management for this and other introduced species. Oyster restoration efforts should not be undertaken where Urosalpinx is established or is likely to invade.more » « less
-
Habitat suitability models have been used for decades to develop spatially explicit predictions of landscape capacity to support populations of target species. As high-resolution remote sensing data are increasingly included in habitat suitability models that inform spatial conservation and restoration decisions, it is essential to validate model predictions with independent, quantitative data collected over sustained time frames. Here, we used data collected from 12 reefs over a 14 yr sampling period to validate a recently developed physical habitat suitability model for intertidal oyster reefs in coastal Virginia, USA. The model used intertidal elevation, water residence time, and fetch to predict the likelihood of suitable conditions for eastern oysters Crassostrea virginica across a coastal landscape, and remotely sensed elevation was the most restrictive parameter in the model. Model validation revealed that adult oyster biomass was on average 1.5 times greater on oyster reefs located in predicted ‘suitable’ habitat relative to reefs located in predicted ‘less suitable’ habitat over the 14 yr sampling period. By validating this model with long-term population data, we highlight the importance of elevation as a driver of sustained intertidal oyster success. These findings extend the validation of habitat suitability models by quantitatively supporting the inclusion of remotely sensed data in habitat suitability models for intertidal species. Our results suggest that future oyster restoration and aquaculture projects could enhance oyster biomass by using habitat suitability models to select optimal site locations.more » « less
An official website of the United States government

