Abstract We present a novel deep neural network (DNN) training scheme and resistive RAM (RRAM) in-memory computing (IMC) hardware evaluation towards achieving high accuracy against RRAM device/array variations and enhanced robustness against adversarial input attacks. We present improved IMC inference accuracy results evaluated on state-of-the-art DNNs including ResNet-18, AlexNet, and VGG with binary, 2-bit, and 4-bit activation/weight precision for the CIFAR-10 dataset. These DNNs are evaluated with measured noise data obtained from three different RRAM-based IMC prototype chips. Across these various DNNs and IMC chip measurements, we show that our proposed hardware noise-aware DNN training consistently improves DNN inference accuracy for actual IMC hardware, up to 8% accuracy improvement for the CIFAR-10 dataset. We also analyze the impact of our proposed noise injection scheme on the adversarial robustness of ResNet-18 DNNs with 1-bit, 2-bit, and 4-bit activation/weight precision. Our results show up to 6% improvement in the robustness to black-box adversarial input attacks.
more »
« less
Hybrid RRAM/SRAM In-Memory Computing for Robust DNN Acceleration
RRAM-based in-memory computing (IMC) effectively accelerates deep neural networks (DNNs) and other machine learning algorithms. On the other hand, in the presence of RRAM device variations and lower precision, the mapping of DNNs to RRAM-based IMC suffers from severe accuracy loss. In this work, we propose a novel hybrid IMC architecture that integrates an RRAM-based IMC macro with a digital SRAM macro using a programmable shifter to compensate for the RRAM variations and recover the accuracy. The digital SRAM macro consists of a small SRAM memory array and an array of multiply-and-accumulate (MAC) units. The non-ideal output from the RRAM macro, due to device and circuit non-idealities, is compensated by adding the precise output from the SRAM macro. In addition, the programmable shifter allows for different scales of compensation by shifting the SRAM macro output relative to the RRAM macro output. On the algorithm side, we develop a framework for the training of DNNs to support the hybrid IMC architecture through ensemble learning. The proposed framework performs quantization (weights and activations), pruning, RRAM IMC-aware training, and employs ensemble learning through different compensation scales by utilizing the programmable shifter. Finally, we design a silicon prototype of the proposed hybrid IMC architecture in the 65nm SUNY process to demonstrate its efficacy. Experimental evaluation of the hybrid IMC architecture shows that the SRAM compensation allows for a realistic IMC architecture with multi-level RRAM cells (MLC) even though they suffer from high variations. The hybrid IMC architecture achieves up to 21.9%, 12.65%, and 6.52% improvement in post-mapping accuracy over state-of-the-art techniques, at minimal overhead, for ResNet-20 on CIFAR-10, VGG-16 on CIFAR-10, and ResNet-18 on ImageNet, respectively.
more »
« less
- Award ID(s):
- 2144751
- PAR ID:
- 10348256
- Date Published:
- Journal Name:
- IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
- ISSN:
- 0278-0070
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hyb-Learn: A Framework for On-Device Self-Supervised Continual Learning with Hybrid RRAM/SRAM MemoryWhile RRAM crossbar-based In-Memory Computing (IMC) has proven highly effective in accelerating Deep Neural Networks (DNNs) inference, RRAM-based on-device training is less explored due to its high energy consumption of weight re-programming and cells' low endurance problem. Besides, emerging trends indicate a need for on-device continual learning which sequentially acquires knowledge from multiple tasks to enhance user's experiences and eliminate data privacy concerns. However, learning on each new task leads to forgetting prior learned knowledge on prior tasks, which is known as catastrophic forgetting. To address these challenges, we are the first to propose a novel training framework, Hyb-Learn, for enabling on-device continual learning with a hybrid RRAM/SRAM IMC architecture design. Specifically, when training each new arriving task, our approach first partitions the model into two groups based on the proposed task-correlated PE-wise correlation to freeze or re-training, and correspondingly mapping to RRAM and SRAM, respectively. In practice, the RRAM stores frozen weights with strong task correlation to prior tasks to eliminate the high cost of weight reprogramming issue of RRAM, while the SRAM stores the remaining weights that will be updated. Furthermore, to maximize the freezing ratio for improving training efficiency while maintaining accuracy and mitigating catastrophic forgetting, we incorporate self-supervised learning algorithms that are initialized from a pre-trained model for training each new task.more » « less
-
In-memory-computing (IMC) SRAM architecture has gained significant attention as it achieves high energy efficiency for computing a convolutional neural network (CNN) model [1]. Recent works investigated the use of analog-mixed-signal (AMS) hardware for high area and energy efficiency [2], [3]. However, AMS hardware output is well known to be susceptible to process, voltage, and temperature (PVT) variations, limiting the computing precision and ultimately the inference accuracy of a CNN. We reconfirmed, through the simulation of a capacitor-based IMC SRAM macro that computes a 256D binary dot product, that the AMS computing hardware has a significant root-mean-square error (RMSE) of 22.5% across the worst-case voltage, temperature (Fig. 16.1.1 top left) and 3-sigma process variations (Fig. 16.1.1 top right). On the other hand, we can implement an IMC SRAM macro using robust digital logic [4], which can virtually eliminate the variability issue (Fig. 16.1.1 top). However, digital circuits require more devices than AMS counterparts (e.g., 28 transistors for a mirror full adder [FA]). As a result, a recent digital IMC SRAM shows a lower area efficiency of 6368F2/b (22nm, 4b/4b weight/activation) [5] than the AMS counterpart (1170F2/b, 65nm, 1b/1b) [3]. In light of this, we aim to adopt approximate arithmetic hardware to improve area and power efficiency and present two digital IMC macros (DIMC) with different levels of approximation (Fig. 16.1.1 bottom left). Also, we propose an approximation-aware training algorithm and a number format to minimize inference accuracy degradation induced by approximate hardware (Fig. 16.1.1 bottom right). We prototyped a 28nm test chip: for a 1b/1b CNN model for CIFAR-10 and across 0.5-to-1.1V supply, the DIMC with double-approximate hardware (DIMC-D) achieves 2569F2/b, 932-2219TOPS/W, 475-20032GOPS, and 86.96% accuracy, while for a 4b/1b CNN model, the DIMC with the single-approximate hardware (DIMC-S) achieves 3814F2/b, 458-990TOPS/Wmore » « less
-
With the prosperous development of Deep Neural Network (DNNs), numerous Process-In-Memory (PIM) designs have emerged to accelerate DNN models with exceptional throughput and energy-efficiency. PIM accelerators based on Non-Volatile Memory (NVM) or volatile memory offer distinct advantages for computational efficiency and performance. NVM based PIM accelerators, demonstrated success in DNN inference, face limitations in on-device learning due to high write energy, latency, and instability. Conversely, fast volatile memories, like SRAM, offer rapid read/write operations for DNN training, but suffer from significant leakage currents and large memory footprints. In this paper, for the first time, we present a fully-digital sparse processing in hybrid NVM-SRAM design, synergistically combines the strengths of NVM and SRAM, tailored for on-device continual learning. Our designed NVM and SRAM based PIM circuit macros could support both storage and processing of N:M structured sparsity pattern, significantly improving the storage and computing efficiency. Exhaustive experiments demonstrate that our hybrid system effectively reduces area and power consumption while maintaining high accuracy, offering a scalable and versatile solution for on-device continual learning.more » « less
-
In-memory computing (IMC) provides energy- efficient solutions to deep neural networks (DNN). Most IMC de- signs for DNNs employ fixed-point precisions. However, floating- point precision is still required for DNN training and complex inference models to maintain high accuracy. There have not been float-point precision based IMC works in the literature where the float-point computation is immersed into the weight memory storage. In this work, we propose a novel floating-point precision IMC macro with a configurable architecture that supports both normal 8-bit floating point (FP8) and 8-bit block floating point (BF8) with a shared exponent. The proposed FP-IMC macro implemented in 28nm CMOS demonstrates 12.1 TOPS/W for FP8 precision and 66.6 TOPS/W for BF8 precision, improving energy-efficiency beyond the state-of-the-art FP IMC macros.more » « less