skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on November 1, 2025

Title: Impact of Systematic Modeling Uncertainties on Kilonova Property Estimation
Abstract The precise atomic structure and therefore the wavelength-dependent opacities of lanthanides are highly uncertain. This uncertainty introduces systematic errors in modeling transients like kilonovae and estimating key properties such as mass, characteristic velocity, and heavy metal content. Here, we quantify how atomic data from across the literature as well as choices of thermalization efficiency ofr-process radioactive decay heating impact the light curve and spectra of kilonovae. Specifically, we analyze the spectra of a grid of models produced by the radiative transfer codeSedonathat span the expected range of kilonova properties to identify regions with the highest systematic uncertainty. Our findings indicate that differences in atomic data have a substantial impact on estimates of lanthanide mass fraction, spanning approximately 1 order of magnitude for lanthanide-rich ejecta, and demonstrate the difficulty in precisely measuring the lanthanide fraction in lanthanide-poor ejecta. Mass estimates vary typically by 25%–40% for differing atomic data. Similarly, the choice of thermalization efficiency can affect mass estimates by 20%–50%. Observational properties such as color and decay rate are highly model dependent. Velocity estimation, when fitting solely based on the light curve, can have a typical error of ∼100%. Atomic data of lightr-process elements can strongly affect blue emission. Even for well-observed events like GW170817, the total lanthanide production estimated using different atomic data sets can vary by a factor of ∼6.  more » « less
Award ID(s):
2221789
PAR ID:
10563400
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ApJ
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
975
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
213
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As LIGO-Virgo-KAGRA enters its fourth observing run, a new opportunity to search for electromagnetic counterparts of compact object mergers will also begin. The light curves and spectra from the first “kilonova” associated with a binary neutron star merger (NSM) suggests that these sites are hosts of the rapid neutron capture (“r”) process. However, it is unknown just how robust elemental production can be in mergers. Identifying signposts of the production of particular nuclei is critical for fully understanding merger-driven heavy-element synthesis. In this study, we investigate the properties of very neutron-rich nuclei for which superheavy elements (Z≥ 104) can be produced in NSMs and whether they can similarly imprint a unique signature on kilonova light-curve evolution. A superheavy-element signature in kilonovae represents a route to establishing a lower limit on heavy-element production in NSMs as well as possibly being the first evidence of superheavy-element synthesis in nature. Favorable NSM conditions yield a mass fraction of superheavy elementsXZ≥104≈ 3 × 10−2at 7.5 hr post-merger. With this mass fraction of superheavy elements, we find that the component of kilonova light curves possibly containing superheavy elements may appear similar to those arising from lanthanide-poor ejecta. Therefore, photometric characterizations of superheavy-element rich kilonova may possibly misidentify them as lanthanide-poor events. 
    more » « less
  2. Abstract The electromagnetic emission from the nonrelativistic ejecta launched in neutron star mergers (either dynamically or through a disk wind) has the potential to probe both the total mass and composition of this ejecta. These observations are crucial in understanding the role of these mergers in the production ofr-process elements in the Universe. However, many properties of the ejecta can alter the light curves and we must both identify which properties play a role in shaping this emission and understand the effects these properties have on the emission before we can use observations to place strong constraints on the amount ofr-process elements produced in the merger. This paper focuses on understanding the effect of the velocity distribution (amount of mass moving at different velocities) for lanthanide-rich ejecta on the light curves and spectra. The simulations use distributions guided by recent calculations of disk outflows and compare the velocity-distribution effects to those of ejecta mass, velocity, and composition. Our comparisons show that uncertainties in the velocity distribution can lead to a factor of 2–4 uncertainties in the inferred ejecta mass based on peak infrared luminosities. We also show that early-time UV or optical observations may be able to constrain the velocity distribution, reducing the uncertainty in the ejecta mass. 
    more » « less
  3. Abstract We study the production of very light elements (Z< 20) in the dynamical and spiral-wave wind ejecta of binary neutron star mergers by combining detailed nucleosynthesis calculations with the outcome of numerical relativity merger simulations. All our models are targeted to GW170817 and include neutrino radiation. We explore different finite-temperature, composition-dependent nuclear equations of state, and binary mass ratios, and find that hydrogen and helium are the most abundant light elements. For both elements, the decay of free neutrons is the driving nuclear reaction. In particular, ∼0.5–2 × 10−6Mof hydrogen are produced in the fast expanding tail of the dynamical ejecta, while ∼1.5–11 × 10−6Mof helium are synthesized in the bulk of the dynamical ejecta, usually in association with heavyr-process elements. By computing synthetic spectra, we find that the possibility of detecting hydrogen and helium features in kilonova spectra is very unlikely for fiducial masses and luminosities, even when including nonlocal thermodynamic equilibrium effects. The latter could be crucial to observe helium lines a few days after merger for faint kilonovae or for luminous kilonovae ejecting large masses of helium. Finally, we compute the amount of strontium synthesized in the dynamical and spiral-wave wind ejecta, and find that it is consistent with (or even larger than, in the case of a long-lived remnant) the one required to explain early spectral features in the kilonova of GW170817. 
    more » « less
  4. Abstract We present high angular resolution imaging that detects the MOA-2008-BLG-379L exoplanet host star using Keck adaptive optics and the Hubble Space Telescope. These observations reveal host star and planet masses ofMhost= 0.434 ± 0.065Mandmp= 2.44 ± 0.49MJupiter. They are located at a distance ofDL= 3.44 ± 0.53 kpc, with a projected separation of 2.70 ± 0.42 au. These results contribute to our determination of exoplanet host star masses for the Suzuki et al. statistical sample, which will determine the dependence of the planet occurrence rate on the mass and distance of the host stars. We also present a detailed discussion of the image-constrained modeling version of theeesunhonglight-curve modeling code that applies high angular resolution image constraints to the light-curve modeling process. This code increases modeling efficiency by a large factor by excluding models that are inconsistent with the high angular resolution images. The analysis of this and other events from the Suzuki et al. statistical sample reveals the importance of including higher-order effects, such as microlensing parallax and planetary orbital motion, even when these features are not required to fit the light-curve data. The inclusion of these effects may be needed to obtain accurate estimates of the uncertainty of other microlensing parameters that affect the inferred properties of exoplanet microlens systems. This will be important for the exoplanet microlensing survey of the Roman Space Telescope, which will use both light-curve photometry and high angular resolution imaging to characterize planetary microlens systems. 
    more » « less
  5. Abstract We present UV and/or optical observations and models of SN 2023ixf, a type II supernova (SN) located in Messier 101 at 6.9 Mpc. Early time (flash) spectroscopy of SN 2023ixf, obtained primarily at Lick Observatory, reveals emission lines of Hi, Hei/ii, Civ, and Niii/iv/vwith a narrow core and broad, symmetric wings arising from the photoionization of dense, close-in circumstellar material (CSM) located around the progenitor star prior to shock breakout. These electron-scattering broadened line profiles persist for ∼8 days with respect to first light, at which time Doppler broadened the features from the fastest SN ejecta form, suggesting a reduction in CSM density atr≳ 1015cm. The early time light curve of SN 2023ixf shows peak absolute magnitudes (e.g.,Mu= −18.6 mag,Mg= −18.4 mag) that are ≳2 mag brighter than typical type II SNe, this photometric boost also being consistent with the shock power supplied from CSM interaction. Comparison of SN 2023ixf to a grid of light-curve and multiepoch spectral models from the non-LTE radiative transfer codeCMFGENand the radiation-hydrodynamics codeHERACLESsuggests dense, solar-metallicity CSM confined tor= (0.5–1) × 1015cm, and a progenitor mass-loss rate of M ̇ = 10 2 M yr−1. For the assumed progenitor wind velocity ofvw= 50 km s−1, this corresponds to enhanced mass loss (i.e.,superwindphase) during the last ∼3–6 yr before explosion. 
    more » « less