Abstract Strongly correlated polaritons in Jaynes–Cummings (JC) lattices can exhibit quantum phase transitions between the Mott-insulating and superfluid phases at integer fillings. The prerequisite to observe such phase transitions is to pump polariton excitations into a JC lattice and prepare them into appropriate ground states. Despite previous efforts, it is still challenging to generate many-body states with high accuracy. Here, we present an approach for the robust preparation of many-body ground states of polaritons in finite-sized JC lattices by optimized nonlinear ramping. We apply a Landau–Zener type of estimation to this finite-sized system and derive the optimal ramping index for selected ramping trajectories, which can greatly improve the fidelity of the prepared states. With numerical simulation, we show that by choosing an appropriate ramping trajectory, the fidelity in this approach can remain close to unity in almost the entire parameter space. This approach can shed light on high-fidelity state preparation in quantum simulators and advance the implementation of quantum simulation with practical devices. 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            Quantum state preparation in Jaynes-Cummings lattices
                        
                    
    
            One of the key questions in quantum information is the preparation of desired multipartite quantum states with high fidelity. Adiabatic evolution has been widely explored to achieve state preparation in quantum many-body systems. However, in noisy quantum systems, the adiabatic approach faces a dilemma: either extending the evolution timescales to reduce diabatic transitions or shortening the timescales to mitigate decoherence effects. Various quantum control approaches have been studied to resolve this dilemma. In a few recent works, we utilized Jaynes-Cummings (JC) lattices as a platform to investigate the potential of several quantum control techniques in preparing quantum many-body states, including the optimized adiabatic evolution approach, the quantum optimal control technique, and quantum shortcuts to adiabaticity. Here we first give an overview of our previous results on utilizing quantum optimal control in JC lattices with unit filling and utilizing local counterdiabatic driving in JC lattices with a single excitation. Then we present our results on the energy costs and energy fluctuations in these approaches. Our studies give insights into the implementation of different approaches in practical quantum devices and the connection between the energy costs and the quantum speed limit in preparing desired quantum many-body states for quantum simulation and quantum computation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2037987
- PAR ID:
- 10563424
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- Journal of Physics: Conference Series
- Volume:
- 2912
- Issue:
- 1
- ISSN:
- 1742-6588
- Page Range / eLocation ID:
- 012041
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This thesis investigates quantum algorithms for eigenstate preparation, with a primary focus on solving eigenvalue problems such as the Schrodinger equation by utilizing near-term quantum computing devices. These problems are ubiquitous in several scientific fields, but more accurate solutions are specifically needed as a prerequisite for many quantum simulation tasks. To address this, we establish three methods in detail: quantum adiabatic evolution with optimal control, the Rodeo Algorithm, and the Variational Rodeo Algorithm.The first method explored is adiabatic evolution, a technique that prepares quantum states by simulating a quantum system that evolves slowly over time. The adiabatic theorem can be used to ensure that the system remains in an eigenstate throughout the process, but its implementation can often be infeasible on current quantum computing hardware. We employ a unique approach using optimal control to create custom gate operations for superconducting qubits and demonstrate the algorithm on a two-qubit IBM cloud quantum computing device. We then explore an alternative to adiabatic evolution, the Rodeo Algorithm, which offers a different approach to eigenstate preparation by using a controlled quantum evolution that selectively filters out undesired components in the wave function stored on a quantum register. We show results suggesting that this method can be effective in preparing eigenstates, but its practicality is predicated on the preparation of an initial state that has significant overlap with the desired eigenstate. To address this, we introduce the novel Variational Rodeo Algorithm, which replaces the initialization step with dynamic optimization of quantum circuit parameters to increase the success probability of the Rodeo Algorithm. The added flexibility compensates for instances in which the original algorithm can be unsuccessful, allowing for better scalability. This research seeks to contribute to a deeper understanding of how quantum algorithms can be employed to attain efficient and accurate solutions to eigenvalue problems. The overarching goal is to present ideas that can be used to improve understanding of nuclear physics by providing potential quantum and classical techniques that can aid in tasks such as the theoretical description of nuclear structures and the simulation of nuclear reactions.more » « less
- 
            Abstract High-fidelity preparation of quantum states in an interacting many-body system is often hindered by the lack of knowledge of such states and by limited decoherence times. Here, we study a quantum optimal control (QOC) approach for fast generation of quantum ground states in a finite-sized Jaynes-Cummings lattice with unit filling. Our result shows that the QOC approach can generate quantum many-body states with high fidelity when the evolution time is above a threshold time, and it can significantly outperform the adiabatic approach. We study the dependence of the threshold time on the parameter constraints and the connection of the threshold time with the quantum speed limit. We also show that the QOC approach can be robust against control errors. Our result can lead to advances in the application of the QOC to many-body state preparation.more » « less
- 
            The rodeo algorithm is an efficient algorithm for eigenstate preparation and eigenvalue estimation for any observable on a quantum computer. This makes it a promising tool for studying the spectrum and structure of atomic nuclei as well as other fields of quantum many-body physics. The only requirement is that the initial state has sufficient overlap probability with the desired eigenstate. While it is exponentially faster than well-known algorithms such as phase estimation and adiabatic evolution for eigenstate preparation, it has yet to be implemented on an actual quantum device. In this work, we apply the rodeo algorithm to determine the energy levels of a random one-qubit Hamiltonian, resulting in a relative error of 0.08% using mid-circuit measurements on the IBM Q device Casablanca. This surpasses the accuracy of directly-prepared eigenvector expectation values using the same quantum device. We take advantage of the high-accuracy energy determination and use the Hellmann-Feynman theorem to compute eigenvector expectation values for a different random one-qubit observable. For the Hellmann-Feynman calculations, we find a relative error of 0.7%. We conclude by discussing possible future applications of the rodeo algorithm for multi-qubit Hamiltonians.more » « less
- 
            Quantum many-body scar states are highly excited eigenstates of many-body systems that exhibit atypical entanglement and correlation properties relative to typical eigenstates at the same energy density. Scar states also give rise to infinitely long-lived coherent dynamics when the system is prepared in a special initial state having finite overlap with them. Many models with exact scar states have been constructed, but the fate of scarred eigenstates and dynamics when these models are perturbed is difficult to study with classical computational techniques. In this work, we propose state preparation protocols that enable the use of quantum computers to study this question. We present protocols both for individual scar states in a particular model, as well as superpositions of them that give rise to coherent dynamics. For superpositions of scar states, we present both a system-size-linear depth unitary and a finite-depth nonunitary state preparation protocol, the latter of which uses measurement and postselection to reduce the circuit depth. For individual scarred eigenstates, we formulate an exact state preparation approach based on matrix product states that yields quasipolynomial-depth circuits, as well as a variational approach with a polynomial-depth ansatz circuit. We also provide proof of principle state-preparation demonstrations on superconducting quantum hardware.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
