skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling Video Playback Power Consumption on Mobile Devices
Advancements in mobile hardware and streaming technologies enable high-quality video streaming for mobile users, but this comes at a cost: a boost in power consumption. Despite detailed studies on power consumption during acquisition, existing studies fall short of considering recent technologies and, hence, of accurately capturing video playback power consumption. This paper presents a novel method to model mobile video playback power consumption. First, we identify the major components contributing to power consumption during video playback on mobile devices. Then, we develop models for each component to estimate their power consumption. Our experimental results show that our combined model estimates power consumption with 91% mean accuracy. Furthermore, our model maintains its high accuracy on an unseen device, achieving 88% mean accuracy despite the hardware and screen heterogeneity.  more » « less
Award ID(s):
2313061 1842054
PAR ID:
10563541
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400706172
Page Range / eLocation ID:
22 to 28
Subject(s) / Keyword(s):
energy power modeling mobile devices video streaming
Format(s):
Medium: X
Location:
Bari Italy
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Spatiotemporal variation in cellular bandwidth availability is well-known and could affect a mobile user's quality of experience (QoE), especially while using bandwidth intensive streaming applications such as movies, podcasts, and music videos during commute. If such variations are made available to a streaming service in advance it could perhaps plan better to avoid sub-optimal performance while the user travels through regions of low bandwidth availability. The intuition is that such future knowledge could be used to buffer additional content in regions of higher bandwidth availability to tide over the deficits in regions of low bandwidth availability. Foresight is a service designed to provide this future knowledge for client apps running on a mobile device. It comprises three components: (a) a crowd-sourced bandwidth estimate reporting facility, (b) an on-cloud bandwidth service that records the spatiotemporal variations in bandwidth and serves queries for bandwidth availability from mobile users, and (c) an on-device bandwidth manager that caters to the bandwidth requirements from client apps by providing them with bandwidth allocation schedules. Foresight is implemented in the Android framework. As a proof of concept for using this service, we have modified an open-source video player---Exoplayer---to use the results of Foresight in its video buffer management. Our performance evaluation shows Foresight's scalability. We also showcase the opportunity that Foresight offers to ExoPlayer to enhance video quality of experience (QoE) despite spatiotemporal bandwidth variations for metrics such as overall higher bitrate of playback, reduction in number of bitrate switches, and reduction in the number of stalls during video playback. 
    more » « less
  2. Adaptive bitrate (ABR) algorithms aim to make optimal bitrate decisions in dynamically changing network conditions to ensure a high quality of experience (QoE) for the users during video streaming. However, most of the existing ABRs share the limitations of predefined rules and incorrect assumptions about streaming parameters. They also come short to consider the perceived quality in their QoE model, target higher bitrates regardless, and ignore the corresponding energy consumption. This joint approach results in additional energy consumption and becomes a burden, especially for mobile device users. This paper proposes GreenABR, a new deep reinforcement learning-based ABR scheme that optimizes the energy consumption during video streaming without sacrificing the user QoE. GreenABR employs a standard perceived quality metric, VMAF, and real power measurements collected through a streaming application. GreenABR's deep reinforcement learning model makes no assumptions about the streaming environment and learns how to adapt to the dynamically changing conditions in a wide range of real network scenarios. GreenABR outperforms the existing state-of-the-art ABR algorithms by saving up to 57% in streaming energy consumption and 60% in data consumption while achieving up to 22% more perceptual QoE due to up to 84% less rebuffering time and near-zero capacity violations. 
    more » « less
  3. Adaptive bitrate (ABR) algorithms aim to make optimal bitrate de- cisions in dynamically changing network conditions to ensure a high quality of experience (QoE) for the users during video stream- ing. However, most of the existing ABRs share the limitations of predefined rules and incorrect assumptions about streaming pa- rameters. They also come short to consider the perceived quality in their QoE model, target higher bitrates regardless, and ignore the corresponding energy consumption. This joint approach results in additional energy consumption and becomes a burden, especially for mobile device users. This paper proposes GreenABR, a new deep reinforcement learning-based ABR scheme that optimizes the energy consumption during video streaming without sacrificing the user QoE. GreenABR employs a standard perceived quality metric, VMAF, and real power measurements collected through a streaming application. GreenABR’s deep reinforcement learning model makes no assumptions about the streaming environment and learns how to adapt to the dynamically changing conditions in a wide range of real network scenarios. GreenABR outperforms the existing state-of-the-art ABR algorithms by saving up to 57% in streaming energy consumption and 60% in data consumption while achieving up to 22% more perceptual QoE due to up to 84% less rebuffering time and near-zero capacity violations. 
    more » « less
  4. null (Ed.)
    This paper presents a Brownian-approximation framework to optimize the quality of experience (QoE) for real-time video streaming in wireless networks. In real-time video streaming, one major challenge is to tackle the natural tension between the two most critical QoE metrics: playback latency and video interruption. To study this trade-off, we first propose an analytical model that precisely captures all aspects of the playback process of a real-time video stream, including playback latency, video interruptions, and packet dropping. Built on this model, we show that the playback process of a real-time video can be approximated by a two-sided reflected Brownian motion. Through such Brownian approximation, we are able to study the fundamental limits of the two QoE metrics and characterize a necessary and sufficient condition for a set of QoE performance requirements to be feasible. We propose a scheduling policy that satisfies any feasible set of QoE performance requirements and then obtain simple rules on the trade-off between playback latency and the video interrupt rates, in both heavy-traffic and under-loaded regimes. Finally, simulation results verify the accuracy of the proposed approximation and show that the proposed policy outperforms other popular baseline policies. 
    more » « less
  5. With the advent of 5G, supporting high-quality game streaming applications on edge devices has become a reality. This is evidenced by a recent surge in cloud gaming applications on mobile devices. In contrast to video streaming applications, interactive games require much more compute power for supporting improved rendering (such as 4K streaming) with the stipulated frames-per second (FPS) constraints. This in turn consumes more battery power in a power-constrained mobile device. Thus, the state-of-the-art gaming applications suffer from lower video quality (QoS) and/or energy efficiency. While there has been a plethora of recent works on optimizing game streaming applications, to our knowledge, there is no study that systematically investigates the design pairs on the end-to-end game streaming pipeline across the cloud, network, and edge devices to understand the individual contributions of the different stages of the pipeline for improving the overall QoS and energy efficiency. In this context, this paper presents a comprehensive performance and power analysis of the entire game streaming pipeline consisting of the server/cloud side, network, and edge. Through extensive measurements with a high-end workstation mimicking the cloud end, an open-source platform (Moonlight-GameStreaming) emulating the edge device/mobile platform, and two network settings (WiFi and 5G) we conduct a detailed measurement-based study with seven representative games with different characteristics. We characterize the performance in terms of frame latency, QoS, bitrate, and energy consumption for different stages of the gaming pipeline. Our study shows that the rendering stage and the encoding stage at the cloud end are the bottlenecks to support 4K streaming. While 5G is certainly more suitable for supporting enhanced video quality with 4K streaming, it is more expensive in terms of power consumption compared to WiFi. Further, fluctuations in 5G network quality can lead to huge frame drops thus affecting QoS, which needs to be addressed by a coordinated design between the edge device and the server. Finally, the network interface and the decoder units in a mobile platform need more energy-efficient design to support high quality games at a lower cost. These observations should help in designing more cost-effective future cloud gaming platforms. 
    more » « less