Learner-centered interactions, whether in formal or informal settings, are by their nature unscripted and require both the educator and learner to improvise. In fact, improvisation skills have been recognized as beneficial and applied in a variety of professional development training programs (including science communication, organizational development in university administration, teambuilding and leadership in business, and communication skills in medical education); yet, their inclusion in educator training has been limited. MOXI and UCSB partnered with a professional actor and theater instructor (third author of this paper) to implement applied improvisation training to support informal educators' skills development. After four years of incorporating applied improvisation training in our facilitation training program, we have found that the basic skills of listening, observing, and responding that are critical in learner-centered education are taught effectively through the well-developed, practical, and fun exercises of improvisational theater. In this article, we describe our applied improvisation training and how it builds skills pertinent to implementing learner-centered facilitation, how graduates of our training program connected applied improvisation training to their facilitation, and how other institutions can incorporate it into preparing educators for working in either informal or formal settings.
more »
« less
This content will become publicly available on March 3, 2026
Improvising Interaction: Toward Applied Improvisation Driven Social Robotics Theory and Education
Theater-based design methods are seeing increased use in social robotics, as embodied roleplay is an ideal method for designing embodied interactions. Yet theater-based design methods are often cast as simply one possible tool; there has been little consideration of the importance of specific improvisational skills for theater-based design; and there has been little consideration of how to train students in theater-based design methods. We argue that improvisation is not just one possible tool of social robot design, but is instead central to social robotics. Leveraging recent theoretical work on Applied Improvisation, we show how improvisational skills represent (1) a set of key capabilities needed for any socially interactive robot, (2) a set of learning objectives for training engineers in social robot design, and (3) a set of methodologies for training those engineers to engage in theater-based design methods. Accordingly, we argue for a reconceptualization of Social Robotics as an Applied Improvisation project; we present, as a speculative pedagogical artifact, a sample syllabus for an envisioned Applied Improvisation driven Social Robotics course that might give students the technical and improvisational skills necessary to be effective robot designers; and we present a case study in which Applied Improvisation methods were simultaneously used (a) by instructors, to rapidly scaffold engineering students’ improvisational skills and (b) by those students, to engage in more effective human-robot interaction design.
more »
« less
- PAR ID:
- 10563658
- Publisher / Repository:
- ACM
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Social-educational robotics, such as NAO humanoid robots with social, anthropomorphic, humanlike features, are tools for learning, education, and addressing developmental disorders (e.g., autism spectrum disorder or ASD) through social and collaborative robotic interactions and interventions. There are significant gaps at the intersection of social robotics and autism research dealing with how robotic technology helps ASD individuals with their social, emotional, and communication needs, and supports teachers who engage with ASD students. This research aims to (a) obtain new scientific knowledge on social-educational robotics by exploring the usage of social robots (especially humanoids) and robotic interventions with ASD students at high schools through an ASD student–teacher co-working with social robot–social robotic interactions triad framework; (b) utilize Business Model Canvas (BMC) methodology for robot design and curriculum development targeted at ASD students; and (c) connect interdisciplinary areas of consumer behavior research, social robotics, and human-robot interaction using customer discovery interviews for bridging the gap between academic research on social robotics on the one hand, and industry development and customers on the other. The customer discovery process in this research results in eight core research propositions delineating the contexts that enable a higher quality learning environment corresponding with ASD students’ learning requirements through the use of social robots and preparing them for future learning and workforce environments.more » « less
-
Background: There are 4.9 million English Language Learners (ELLs) in the United States. Only 2% of educators are trained to support these vulnerable students. Social robots show promise for language acquisition and may provide valuable support for students, especially as we return to needing smaller classes due to COVID-19. While cultural responsiveness increases gains for ELLs, little is known about the design of culturally responsive child–robot interactions. Method: Therefore, using a participatory design approach, we conducted an exploratory study with 24 Spanish-speaking ELLs at a Pacific Northwest elementary school. As cultural informants, students participated in a 15-min, robot-led, small group story discussion followed by a post-interaction feedback session. We then conducted reflexive critiques with six ELL teachers who reviewed the group interactions to provide further interpretation on design feature possibilities and potential interactions with the robot. Results: Students found the social robot engaging, but many were hesitant to converse with the robot. During post-interaction dialogue students articulated the specific ways in which the social robot appearance and behavior could be modified to help them feel more comfortable. Teachers postulated that the social robot could be designed to engage students in peer-to-peer conversations. Teachers also recognized the ELLs verbosity when discussing their experiences with the robot and suggested such interactions could stimulate responsiveness from students. Conclusion: Cultural responsiveness is a key component to successful education in ELLs. However, integrating appropriate, cultural responsiveness into robot interactions may require participants as cultural informants to ensure the robot behaviors and interactions are situated in that educational community. Utilizing a participatory approach to engage ELLs in design decisions for social robots is a promising way to gather culturally responsive requirements to inform successful child–robot interactions.more » « less
-
Abstract Experiential learning in biomedical engineering curricula is a critical component to developing graduates who are equipped to contribute to technical design tasks in their careers. This paper presents the development and implementation of an undergraduate and graduate-level soft material robotics design course focused on applications in medical device design. The elective course, offered in a bioengineering department, includes modules on technical topics and hands-on projects relevant to readings, all situated within a human-centered design course. After learning and using first principles governing soft robot design and exploring literature in soft robotics, students propose a new advance in the field in a hands-on design and prototype project. The course described here aims to create a structure to engage students in fabrication and the design approaches taken by practitioners in a specific field, applied here in soft robotics, but applicable to other areas of biomedical engineering. This teaching tips article details the pedagogical tools used to facilitate design and collaboration within the course. Additionally, we aim to highlight ways in which the course creates (1) opportunities to engage undergraduates in design in preparation for capstone courses, (2) outward facing opportunities to connect with practitioners in the field, and (3) the ability to adapt this hands-on experience within a typical lecture structure as well as a hybrid online and in-person offering, thus expanding its utility in bioengineering departments. We reflect on course elements that can inform future design-based course offerings in soft robotics and other design-based multidisciplinary fields in bioengineering.more » « less
-
In this demonstration, we present a holographic projected version of LuminAI, which is an interactive art installation that allows participants to collaborate with an AI dance partner by improvising movements together. By utilizing a mix of a top-down and bottom-up approach, we seek to understand embodied co-creativity in an improvisational dance setting to better develop the design of the modular AI agent to creatively collaborate with a dancer. The purpose of this demonstration is to describe the five-module agent design and investigate how we can design an immersive experience that is design-efficient, portable, light, and duo-user participation. Through this installation in an imitated black box space, audience members and dancers engage in an immersive co-creative dance experience, inspiring discussion on the limitless applications of dance and technology in the realms of learning, training, and creativity.more » « less