Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) imaging and matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) are complementary methods that measure distributions of elements and biomolecules in tissue sections. Quantitative correlations of the information provided by these two imaging modalities requires that the datasets be registered in the same coordinate system, allowing for pixel-by-pixel comparisons. We describe here a computational workflow written in Python that accomplishes this registration, even for adjacent tissue sections, with accuracies within ±50 μm. The value of this registration process is demonstrated by correlating images of tissue sections from mice injected with gold nanomaterial drug delivery systems. Quantitative correlations of the nanomaterial delivery vehicle, as detected by LA-ICP-MS imaging, with biochemical changes, as detected by MALDI-MSI, provide deeper insight into how nanomaterial delivery systems influence lipid biochemistry in tissues. Moreover, the registration process allows the more precise images associated with LA-ICP-MS imaging to be leveraged to achieve improved segmentation in MALDI-MS images, resulting in the identification of lipids that are most associated with different sub-organ regions in tissues.
more »
« less
This content will become publicly available on October 10, 2025
Interpretable dimensionality reduction and classification of mass spectrometry imaging data in a visceral pain model via non-negative matrix factorization
Mass spectrometry imaging (MSI) is a powerful scientific tool for understanding the spatial distribution of biochemical compounds in tissue structures. In this paper, we introduce three novel approaches in MSI data processing to perform the tasks of data augmentation, feature ranking, and image registration. We use these approaches in conjunction with non-negative matrix factorization (NMF) to resolve two of the biggest challenges in MSI data analysis, namely: 1) the large file sizes and associated computational resource requirements and 2) the complexity of interpreting the very high dimensional raw spectral data. There are many dimensionality reduction techniques that address the first challenge but do not necessarily result in readily interpretable features, leaving the second challenge unaddressed. We demonstrate that NMF is an effective dimensionality reduction algorithm that reduces the size of MSI datasets by three orders of magnitude with limited loss of information, yielding spatial and spectral components with meaningful correlation to tissue structure that may be used directly for subsequent data analysis without the need for additional clustering steps. This analysis is demonstrated on an MSI dataset from female Sprague-Dawley rats for an animal model of comorbid visceral pain hypersensitivity (CPH). We find that high-dimensional MSI data (∼ 100,000 ions per pixel) can be reduced to 20 spectral NMF components with < 20% loss in reconstruction accuracy. The resulting spatial NMF components are reproducible and correlate well with H&E-stained tissue images. These components may also be used to generate images with enhanced specificity for different tissue types. Small patches of NMF data (i.e., 20 spatial NMF components over 20 × 20 pixels) provide an accuracy of ∼ 87% in classifying CPH vs naïve control subjects. This paper presents the novel data processing methodologies that were used to produce these results, encompassing novel data processing pipelines for data augmentation to support training for classification, ranking of features according to their contribution to classification, and image registration to enhance tissue-specific imaging.
more »
« less
- Award ID(s):
- 2020624
- PAR ID:
- 10565622
- Editor(s):
- Yousefi, Bardia
- Publisher / Repository:
- PLOS
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 19
- Issue:
- 10
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0300526
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Spectral imaging approaches provide new possibilities for measuring and discriminating fluorescent molecules in living cells and tissues. These approaches often employ tunable filters and robust image processing algorithms to identify many fluorescent labels in a single image set. Here, we present results from a novel spectral imaging technology that scans the fluorescence excitation spectrum, demonstrating that excitation‐scanning hyperspectral image data can discriminate among tissue types and estimate the molecular composition of tissues. This approach allows fast, accurate quantification of many fluorescent species from multivariate image data without the need of exogenous labels or dyes. We evaluated the ability of the excitation‐scanning approach to identify endogenous fluorescence signatures in multiple unlabeled tissue types. Signatures were screened using multi‐pass principal component analysis. Endmember extraction techniques revealed conserved autofluorescent signatures across multiple tissue types. We further examined the ability to detect known molecular signatures by constructing spectral libraries of common endogenous fluorophores and applying multiple spectral analysis techniques on test images from lung, liver and kidney. Spectral deconvolution revealed structure‐specific morphologic contrast generated from pure molecule signatures. These results demonstrate that excitation‐scanning spectral imaging, coupled with spectral imaging processing techniques, provides an approach for discriminating among tissue types and assessing the molecular composition of tissues. Additionally, excitation scanning offers the ability to rapidly screen molecular markers across a range of tissues without using fluorescent labels. This approach lays the groundwork for translation of excitation‐scanning technologies to clinical imaging platforms.more » « less
-
Motivation: Mass spectrometry imaging (MSI) characterizes the molecular composition of tissues at spatial resolution, and has a strong potential for distinguishing tissue types, or disease states. This can be achieved by supervised classification, which takes as input MSI spectra, and assigns class labels to subtissue locations. Unfortunately, developing such classifiers is hindered by the limited availability of training sets with subtissue labels as the ground truth. Subtissue labeling is prohibitively expensive, and only rough annotations of the entire tissues are typically available. Classifiers trained on data with approximate labels have sub-optimal performance. Results: To alleviate this challenge, we contribute a semi-supervised approach mi-CNN. mi-CNN implements multiple instance learning with a convolutional neural network (CNN). The multiple instance aspect enables weak supervision from tissue-level annotations when classifying subtissue locations. The convolutional architecture of the CNN captures contextual dependencies between the spectral features. Evaluations on simulated and experimental datasets demonstrated that mi-CNN improved the subtissue classification as compared to traditional classifiers. We propose mi-CNN as an important step towards accurate subtissue classification in MSI, enabling rapid distinction between tissue types and disease states.more » « less
-
Abstract We introduce a new method based on nonnegative matrix factorization, Neural NMF, for detecting latent hierarchical structure in data. Datasets with hierarchical structure arise in a wide variety of fields, such as document classification, image processing, and bioinformatics. Neural NMF recursively applies NMF in layers to discover overarching topics encompassing the lower-level features. We derive a backpropagation optimization scheme that allows us to frame hierarchical NMF as a neural network. We test Neural NMF on a synthetic hierarchical dataset, the 20 Newsgroups dataset, and the MyLymeData symptoms dataset. Numerical results demonstrate that Neural NMF outperforms other hierarchical NMF methods on these data sets and offers better learned hierarchical structure and interpretability of topics.more » « less
-
Mass spectrometry imaging (MSI) is widely used for the label-free molecular mapping of biological samples. The identification of co-localized molecules in MSI data is crucial to the understanding of biochemical pathways. One of key challenges in molecular colocalization is that complex MSI data are too large for manual annotation but too small for training deep neural networks. Herein, we introduce a self-supervised clustering approach based on contrastive learning, which shows an excellent performance in clustering of MSI data. We train a deep convolutional neural network (CNN) using MSI data from a single experiment without manual annotations to effectively learn high-level spatial features from ion images and classify them based on molecular colocalizations. We demonstrate that contrastive learning generates ion image representations that form well-resolved clusters. Subsequent self-labeling is used to fine-tune both the CNN encoder and linear classifier based on confidently classified ion images. This new approach enables autonomous and high-throughput identification of co-localized species in MSI data, which will dramatically expand the application of spatial lipidomics, metabolomics, and proteomics in biological research.more » « less