The storm sewer geyser is a process where an air–water mixture violently erupts from a manhole. Despite the low hydrostatic pressure, violent eruptions can achieve a height of tens of meters above the ground. This current study experimentally investigates large-scale violent geysers using a large air pocket inserted from a pressurized air tank. The total length of the pipe system is approximately 88 m with a 0.1572 m diameter pipe. This large-scale experiment facilitates the investigation of spontaneous geyser eruptions. This study identifies the role of air–water volume ratio and coefficient of pressure (ratio of absolute initial static pressure to initial dynamic pressure) on the geyser intensity using eruption images and pressure plots. A total of 116 cases are tested, in which the volume ratio is parametrically increased from 0 to 1.1 under various operating conditions. A geyser score is defined to quantify the geyser eruption nature based on visual observations. The key findings are as follows: first, a sharp transition in geyser intensity is observed at the critical volume ratio of 0.5, and pre-transition and post-transition intensity exhibit a linear relationship with the volume ratio; and second, the critical volume ratio linearly varies with the coefficient of pressure.
more »
« less
Mechanistic Understanding of Field-Scale Geysers in Stormsewer Systems Using Three-Dimensional Numerical Modeling
Consecutive oscillatory eruptions of a mixture of gas and liquid in urban stormwater systems, commonly referred to as sewer geysers, are investigated using transient three-dimensional (3D) computational fluid dynamics (CFD) models. This study provides a detailed mechanistic understanding of geyser formation under partially filled dropshaft conditions, an area not previously explored in depth. The maximum geyser eruption velocities were observed to reach 14.58 m/s under fully filled initial conditions (hw/hd = 1) and reduced to 5.17 m/s and 3.02 m/s for partially filled conditions (hw/hd = 0.5 and 0.23, respectively). The pressure gradients along the horizontal pipe drove slug formation and correlated directly with the air ingress rates and dropshaft configurations. The influence of the dropshaft diameter was also assessed, showing a 116% increase in eruption velocity when the dropshaft to horizontal pipe diameter ratio (Dd/Dt) was reduced from 1.0 to 0.5. It was found that the strength of the geyser (as represented by the eruption velocity from the top of the dropshaft) increased with an increase in the initial water depth in the dropshaft and a reduction in the dropshaft diameter. Additionally, the Kelvin–Helmholtz instability criteria were satisfied during transitions from stratified to slug flow, and they were responsible for the jump and transition of the flow during the initial rise and fallback of the water in the dropshaft. The present study shows that, under an initially lower water depth in the dropshaft, immediate spillage is not guaranteed. However, the subsequent mixing of air from the horizontal pipe generated a less dense mixture, causing a change in pressure distribution along the tunnel, which drove the entire geyser mechanism. This study underscores the critical role of the initial conditions and geometric parameters in influencing geyser dynamics, offering practical guidelines for urban drainage infrastructure.
more »
« less
- Award ID(s):
- 1928850
- PAR ID:
- 10565662
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Processes
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2227-9717
- Page Range / eLocation ID:
- 32
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Steamboat Geyser in Yellowstone National Park is the tallest active geyser on Earth and is believed to have hydrologic connection to Cistern Spring, a hydrothermal pool ∼100 m southwest from the geyser vent. Despite broad scientific interest, rare episodic Steamboat eruptions have made it difficult to study its eruption dynamics and underground plumbing architecture. In response to the recent reactivation of Steamboat, which has produced more than 130 eruptions since March 2018, we deployed a dense seismic nodal array surrounding the enigmatic geyser in the summer of 2019. The array recorded abundant 1–5 Hz hydrothermal tremor originating from phase‐transition events within both Steamboat Geyser and Cistern Spring. To constrain the spatiotemporal distribution of the tremor sources, an interferometric‐based polarization analysis was developed. The observed tremor locations indicate that the conduit beneath Steamboat is vertical and extends down to ∼120 m depth and the plumbing of Cistern includes a shallow vertical conduit connecting with a deep, large, and laterally offset reservoir ∼60 m southeast of the surface pool. No direct connection between Steamboat and Cistern plumbing structures is found. The temporal variation of tremor combined within situtemperature and water depth measurements of Cistern reveals interaction between Steamboat and Cistern throughout the eruption/recharge cycles. The observed delayed responses of Cistern Spring in reaction to Steamboat eruptions and recharge suggest that the two plumbing structures may be connected through a fractured/porous medium instead of a direct open channel, consistent with our inferred plumbing structure.more » « less
-
null (Ed.)Steamboat Geyser in Yellowstone National Park’s Norris Geyser Basin began a prolific sequence of eruptions in March 2018 after 34 y of sporadic activity. We analyze a wide range of datasets to explore triggering mechanisms for Steamboat’s reactivation and controls on eruption intervals and height. Prior to Steamboat’s renewed activity, Norris Geyser Basin experienced uplift, a slight increase in radiant temperature, and increased regional seismicity, which may indicate that magmatic processes promoted reactivation. However, because the geothermal reservoir temperature did not change, no other dormant geysers became active, and previous periods with greater seismic moment release did not reawaken Steamboat, the reason for reactivation remains ambiguous. Eruption intervals since 2018 (3.16 to 35.45 d) modulate seasonally, with shorter intervals in the summer. Abnormally long intervals coincide with weakening of a shallow seismic source in the geyser basin’s hydrothermal system. We find no relation between interval and erupted volume, implying unsteady heat and mass discharge. Finally, using data from geysers worldwide, we find a correlation between eruption height and inferred depth to the shallow reservoir supplying water to eruptions. Steamboat is taller because water is stored deeper there than at other geysers, and, hence, more energy is available to power the eruptions.more » « less
-
Abstract Siliceous spicules are micro‐laminated geyserite deposits, or micro‐stromatolites, found around high temperature hot‐springs and geysers, associated with intermittent splashes of water. Understanding conditions of formation of these structures will give insights of critical parameters involved in prebiotic environments and early life. We provide a new data set around two geysers from the El Tatio hydrothermal field, Atacama Desert, Chile, a modern analogue for habitable environments on early Earth and Mars. Small spicules (<5 mm diameter) dominate in the near vent areas, whereas larger spicules (>5 mm diameter) form complex columnar structures in the distal vent (>0.3 m distance from the vent). Hydrodynamics, eruption periodicity, and environmental conditions modulate the temperature and cooling patterns around vents. During geyser eruptions, the temperature of water reaching the ground decreases with the distance from the vent. Cooling is stronger during the evenings, due to strong winds and cold air temperature. Rapid water cooling drives supersaturation of amorphous silica, and therefore precipitation rates increase significantly with distance from the vent. Cooling also controls changes in the bacterial communities, from thin filaments <1 μm diameter predominating closer to the vent, to 1–2 μm diameter filaments in the distal vent. Changes in the silica precipitation rate and biota may control the growth of spicules and the transition to columns. Estimated precipitation rates of silica provide a first approximation of the longevity of these structures and the timing for the formation of internal laminations. Microlamination will form in year time‐scales closer to the vent, and weeks farther from the vent.more » « less
-
When and why earthquakes trigger volcano and geyser eruptions remains unclear. In September 2022, Steamboat Geyser in Yellowstone, USA erupted 8.25 hours after a local M3.9 earthquake—an improbable coincidence based on the geyser’s eruption intervals. We leverage monitoring data from the surrounding geyser basin to determine if the earthquake triggered this eruption. We calculate a peak ground velocity of 1.2 cm s−1, which is the largest ground motion in the area since Steamboat reactivated in March 2018 and exceeds a threshold associated with past earthquake-triggered geyser eruptions in Yellowstone. Despite no changes in other surface hydrothermal activity, we found abrupt, short-lived shifts in ambient seismic noise amplitude and relative seismic velocity in narrow frequency bands related to the subsurface hydrothermal system. Our analysis indicates that Steamboat’s eruption was likely earthquake-triggered. The hours-long delay suggests that dynamic strains from seismic waves altered subsurface permeability and flow which enabled eruption.more » « less
An official website of the United States government

