Adaptive quantum circuits, which combine local unitary gates, midcircuit measurements, and feedforward operations, have recently emerged as a promising avenue for efficient state preparation, particularly on near-term quantum devices limited to shallow-depth circuits. Matrix product states (MPS) comprise a significant class of many-body entangled states, efficiently describing the ground states of one-dimensional gapped local Hamiltonians and finding applications in a number of recent quantum algorithms. Recently, it has been shown that the Affleck-Kennedy-Lieb-Tasaki state—a paradigmatic example of an MPS—can be exactly prepared with an adaptive quantum circuit of constant depth, an impossible feat with local unitary gates alone due to its nonzero correlation length [Smith , PRX Quantum 4, 020315 (2023)]. In this work, we broaden the scope of this approach and demonstrate that a diverse class of MPS can be exactly prepared using constant-depth adaptive quantum circuits, outperforming theoretically optimal preparation with unitary circuits. We show that this class includes short- and long-ranged entangled MPS, symmetry-protected topological (SPT) and symmetry-broken states, MPS with finite Abelian, non-Abelian, and continuous symmetries, resource states for MBQC, and families of states with tunable correlation length. Moreover, we illustrate the utility of our framework for designing constant-depth sampling protocols, such as for random MPS or for generating MPS in a particular SPT phase. We present sufficient conditions for particular MPS to be preparable in constant time, with global on-site symmetry playing a pivotal role. Altogether, this work demonstrates the immense promise of adaptive quantum circuits for efficiently preparing many-body entangled states and provides explicit algorithms that outperform known protocols to prepare an essential class of states. 
                        more » 
                        « less   
                    
                            
                            Macroproperties vs. Microstates in the Classical Simulation of Critical Phenomena in Quench Dynamics of 1D Ising Models
                        
                    
    
            Abstract We study the tractability of classically simulating critical phenomena in the quench dynamics of one-dimensional transverse field Ising models (TFIMs) using highly truncated matrix product states (MPS). We focus on two paradigmatic examples: a dynamical quantum phase transition (DQPT) that occurs in nonintegrable long-range TFIMs, and the infinite-time correlation length of the integrable nearest-neighbor TFIM when quenched to the critical point, where the quantities of interest involve equal time one- and two- point correlation functions, which we associate with macroproperties. For the DQPT, we show that the order parameters can be efficiently simulated with heavy truncation of the MPS bond dimension. This can be used to reliably extract critical properties of the phase transition, including critical exponents, even when the full many-body state is not simulated with high fidelity. The long-time correlation length near the critical point is more sensitive to the full many-body state fidelity, and generally requires a large bond dimension MPS. Nonetheless, this can still be efficiently simulated with strongly truncated MPS because it can be extracted from the short-time behavior of the dynamics where entanglement is low. Our results provide illustrations of scenarios where accurate calculation of the full many-body state (microstate) is intractable due to the volume-law growth of entanglement, yet a precise specification of an exact microstate may not be required when simulating macroproperties that play a role in phases of matter of many-body systems. We also study the tractability of simulation using truncated MPS based on quantum chaos and equilibration in the models. We find a counterintuitive inverse relationship, whereby local expectation values are most easily approximated for chaotic systems whose exact many-body state is most intractable. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2116246
- PAR ID:
- 10565666
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- New Journal of Physics
- ISSN:
- 1367-2630
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Numerical techniques to efficiently model out-of-equilibrium dynamics in interacting quantum many-body systems are key for advancing our capability to harness and understand complex quantum matter. Here we propose a new numerical approach which we refer to as generalized discrete truncated Wigner approximation (GDTWA). It is based on a discrete semi-classical phase space sampling and allows to investigate quantum dynamics in lattice spin systems with arbitraryS ≥ 1/2. We show that the GDTWA can accurately simulate dynamics of large ensembles in arbitrary dimensions. We apply it forS > 1/2 spin-models with dipolar long-range interactions, a scenario arising in recent experiments with magnetic atoms. We show that the method can capture beyond mean-field effects, not only at short times, but it also can correctly reproduce long time quantum-thermalization dynamics. We benchmark the method with exact diagonalization in small systems, with perturbation theory for short times, and with analytical predictions made for models which feature quantum-thermalization at long times. We apply our method to study dynamics in largeS > 1/2 spin-models and compute experimentally accessible observables such as Zeeman level populations, contrast of spin coherence, spin squeezing, and entanglement quantified by single-spin Renyi entropies. We reveal that largeSsystems can feature larger entanglement than correspondingS = 1/2 systems. Our analyses demonstrate that the GDTWA can be a powerful tool for modeling complex spin dynamics in regimes where other state-of-the art numerical methods fail.more » « less
- 
            Ultrashort pulses propagating in nonlinear nanophotonic waveguides can simultaneously leverage both temporal and spatial field confinement, promising a route towards single-photon nonlinearities in an all-photonic platform. In this multimode quantum regime, however, faithful numerical simulations of pulse dynamics naïvely require a representation of the state in an exponentially large Hilbert space. Here, we employ a time-domain, matrix product state (MPS) representation to enable efficient simulations by exploiting the entanglement structure of the system. To extract physical insight from these simulations, we develop an algorithm to unravel the MPS quantum state into constituent temporal supermodes, enabling, e.g., access to the phase-space portraits of arbitrary pulse waveforms. As a demonstration, we perform exact numerical simulations of a Kerr soliton in the quantum regime. We observe the development of non-classical Wigner-function negativity in the solitonic mode as well as quantum corrections to the semiclassical dynamics of the pulse. A similar analysis of simultons reveals a unique entanglement structure between the fundamental and second harmonics. Our approach is also readily compatible with quantum trajectory theory, allowing full quantum treatment of propagation loss and decoherence. We expect this work to establish the MPS technique as part of a unified engineering framework for the emerging field of broadband quantum photonics.more » « less
- 
            Quantum systems have entered a competitive regime in which classical computers must make approximations to represent highly entangled quantum states1,2. However, in this beyond-classically-exact regime, fidelity comparisons between quantum and classical systems have so far been limited to digital quantum devices2,3,4,5, and it remains unsolved how to estimate the actual entanglement content of experiments6. Here, we perform fidelity benchmarking and mixed-state entanglement estimation with a 60-atom analogue Rydberg quantum simulator, reaching a high-entanglement entropy regime in which exact classical simulation becomes impractical. Our benchmarking protocol involves extrapolation from comparisons against an approximate classical algorithm, introduced here, with varying entanglement limits. We then develop and demonstrate an estimator of the experimental mixed-state entanglement6, finding our experiment is competitive with state-of-the-art digital quantum devices performing random circuit evolution2,3,4,5. Finally, we compare the experimental fidelity against that achieved by various approximate classical algorithms, and find that only the algorithm we introduce is able to keep pace with the experiment on the classical hardware we use. Our results enable a new model for evaluating the ability of both analogue and digital quantum devices to generate entanglement in the beyond-classically-exact regime, and highlight the evolving divide between quantum and classical systems.more » « less
- 
            We propose an analytic approach for the steady-state dynamics of Markov processes on locally tree-like graphs. It is based on time-translation invariant probability distributions for edge trajectories, which we encode in terms of infinite matrix products. For homogeneous ensembles on regular graphs, the distribution is parametrized by a single d×d×r^2 tensor, where r is the number of states per variable, and d is the matrix-product bond dimension. While the method becomes exact in the large-d limit, it typically provides highly accurate results even for small bond dimensions d. The d^2r^2 parameters are determined by solving a fixed point equation, for which we provide an efficient belief-propagation procedure. We apply this approach to a variety of models, including Ising-Glauber dynamics with symmetric and asymmetric couplings, as well as the SIS model. Even for small d, the results are compatible with Monte Carlo estimates and accurately reproduce known exact solutions. The method provides access to precise temporal correlations, which, in some regimes, would be virtually impossible to estimate by sampling.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
