Abstract Intensification of livestock production has reduced heterogeneity in vegetative structure in managed grasslands, which has been linked to widespread declines in grassland songbird populations throughout North America. Patch-burn grazing management aims to restore some of that heterogeneity in vegetative structure by burning discrete pasture sections, so that cattle preferentially graze in recently burned areas. Although patch-burn grazing can increase reproductive success of grassland songbirds, we know little about possible interactions with regional variation in predator communities or brood parasite abundance, or annual variation in weather conditions. Using six years of data from two tallgrass prairie sites in eastern Kansas, USA, we tested effects of patch-burn grazing on the rates of brood parasitism, clutch size, nest survival, and fledging success of three common grassland songbirds, Dickcissels (Spiza americana), Eastern Meadowlarks (Sturnella magna), and Grasshopper Sparrows (Ammodramus savannarum), among pastures managed with patch-burn grazing versus pastures that were annually burned and either grazed or ungrazed. Dickcissel nests experienced lower parasitism (72.8 ± 4.6% SE vs. 89.1 ± 2.2%) and Eastern Meadowlarks had higher nest survival (63.2 ± 20.5% vs. 16.5 ± 3.5%) in annually burned and ungrazed pastures than pastures managed with patch-burn grazing. However, average number of host fledglings per nesting attempt did not differ among management treatments for any species. Annual variation in weather conditions had a large effect on vegetation structure, but not on reproductive success. Probability of brood parasitism was consistently high (25.5‒84.7%) and nest survival was consistently low (9.9–16.9%) for all species pooled across treatments, sites, and years, indicating that combined effects of predation, parasitism and drought can offset potential benefits of patch-burn grazing management previously found in tallgrass prairies. Although differences in reproductive success among management treatments were minimal, patch-burn grazing management could still benefit population dynamics of grassland songbirds in areas where nest predators and brood parasites are locally abundant by providing suitable nesting habitat for bird species that require greater amounts of vegetation cover and litter, generally not present in burned pastures.
more »
« less
Soil C:N:P stoichiometric signatures of grasslands differ between tropical and warm temperate climatic zones
Abstract Climate and land management affect nutrient cycling in grassland ecosystems. We aimed to understand whether temperate and tropical grasslands differ in terms of soil organic carbon (SOC), nitrogen (N), and phosphorus (P) concentrations, and their C:N:P stoichiometric ratios in grazed and ungrazed natural grasslands and pastures. For this, we used a meta-analysis approach (1296 records, 241 papers), and regression models to explain the observed patterns in terms of mean annual precipitation (MAP), mean annual temperature (MAT), altitude, and latitude. SOC, N, and P concentrations were higher in temperate regions than in tropical ones, and they negatively correlated with MAT and MAP. The grassland type effect was more significant for tropical regions. In tropical regions, soil C:N ratios were higher in ungrazed than in grazed pastures, and soil N:P ratios in ungrazed sites were higher in pastures than in natural grasslands. Grazing increases soil N and SOC for natural grasslands in temperate regions. Our findings suggest that soil stoichiometric C:N:P stoichiometric signatures in grasslands differed between tropical and temperate regions on a global scale. P is a key element in regulation and restriction on soil C and N cycling in tropical regions but less in the temperate ones. Our findings suggest the direction of effects of grazing or grassland type on C:N:P stoichiometric signature. Since imbalances in soil stoichiometric ratios may have implications for ecosystem functioning, the assessment of these patterns could serve as a valuable tool for management and conservation of grasslands and pastures in both tropical and temperate regions.
more »
« less
- Award ID(s):
- 2145130
- PAR ID:
- 10565808
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Biogeochemistry
- Volume:
- 167
- Issue:
- 7
- ISSN:
- 1573-515X
- Page Range / eLocation ID:
- 909 to 926
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract High latitude wetlands are ecologically important ecosystems due to their large carbon (C) storage capacity and because they serve as breeding and nesting habitat for large populations of migratory birds. Goose herbivory in wetland meadows affects leaf chemical and morphological traits and also influences soil properties by increasing soil temperature and depositing faeces. Grazing‐induced changes to above‐ground traits and soil properties impact C cycling, but the influence of grazing on root‐mediated C and nitrogen (N) cycling has not been explored.We investigated how goose herbivory in a low‐Arctic coastal wetland in western Alaska affected root morphological, physiological and chemical traits of a dominant graminoid by assessing plant traits in ungrazed versus heavily grazed sedge meadows. We also performed a 11‐week lab‐based root incubation experiment to determine how grazing affects CO2‐C efflux, the size and decay rate of the fast‐cycling C pool (i.e. C with a mean residence time of days to weeks, determined via CO2‐C efflux), and patterns of N mineralization during root decomposition.Goose grazing altered root chemical traits by increasing root N by 7%, cellulose by 12%, and ash content by 17%, indicating that grazing shifted root chemical traits towards a resource‐acquisition strategy. Grazing did not alter root biomass, morphology or bulk C exudation. In our root incubation, soils that included the roots of grazed plants tended to exhibit greater CO2‐C efflux than those containing ungrazed plant roots due to a larger fast‐cycling C pool. Additionally, grazing‐induced increases in soil temperature led to greater CO2‐C efflux due to a faster decay rate of the fast‐cycling C pool. Finally, compared with ungrazed roots, we found that the decomposition of grazed roots resulted in more N being transferred to root necromass from the surrounding soil, suggesting that microbial communities decomposing grazed roots immobilized N.Synthesis. Overall, our results indicate that goose grazing increased C‐cycling rates by influencing soil environmental conditions and by altering the ecological strategy of grazed plants. In contrast, grazing decreased net N mineralization by promoting N immobilization. These results suggest that changing patterns and abundances of herbivores can have substantial effects on elemental cycles.more » « less
-
Nitrogen (N) is a necessary element of soil fertility and a limiting nutrient in tallgrass prairie but grazers like bison and cattle can also recycle N. Bison and cattle impact the nitrogen (N) cycle by digesting forage that is consumed, and recycled back to the soil in a more available forms stimulating soil microbial N cycling activities. Yet we do not know how both grazers comparatively affect N cycling in tallgrass prairie. Thus, we investigated if bison and cattle had similar impacts on N cycling in annually burned tallgrass prairie relative to ungrazed conditions over a 3-year period (2020–2022) at the Konza Prairie Biological Station. We examined: soil pH, soil water content, mineralized N, nitrification potential, denitrification potential and extracellular enzyme assays. Interannual variability in precipitation controlled soil water and N cycling microbial activities but grazing effects had a stronger influence on N cycling. We found significant differences and increased soil pH, nitrification and denitrification potential and less N limitation in bison vs cattle grazed soils where bison grazed soils exhibited faster N cycling. Differences between the grazers may be attributed to the different management of bison and cattle as both can impact N cycling. Overall, these data provide some evidence that bison and cattle affect N cycling differently at this study site, and improve the ecological understanding of grazer impacts on N cycling dynamics within the tallgrass prairie ecosystem.more » « less
-
Abstract AimsHerbivores create large differences in litter decomposition rates, but identifying how they do this can be difficult because they simultaneously influence both biotic and abiotic factors. In the Yukon-Kuskokwim (Y-K) River Delta in western Alaska, geese are dominant herbivores in wet-sedge meadows, where they create ‘grazing lawns’ that have nutrient-rich litter and an open habitat structure. To understand how geese affect decomposition, we tested the effects of litter quality and habitat type on litter decomposition over one year. MethodsWe performed a litter bag study in which we collected two litter types representing grazed and ungrazed vegetation conditions (high quality litter similar to grazed litter, and lower quality senesced, ungrazed litter), then incubated them in ‘grazing lawn’ and ungrazed meadows. Litter mass loss, carbon, nitrogen, cellulose and lignin content were measured after 3, 6, 9, and 52 weeks. We also monitored abiotic conditions (i.e., soil temperature, UV radiation, throughfall, and soil moisture content) in each habitat type. ResultsHigh-quality litter (lower lignin:N ratios) lost more mass than low-quality ungrazed litter over the whole study. However, at different times during the decomposition process, lower quality litter decomposed faster in grazed habitat, whereas higher quality litter decomposed faster in ungrazed habitat. This occurred despite abiotic conditions in grazed habitat that generally promote faster decomposition. ConclusionResults suggest that herbivore-induced increases in litter quality increase decomposition rates, and that the accumulation of the low-quality litter in ungrazed habitats is partly due to slow decomposition rates. While herbivores influence habitat conditions, the effects of habitat on decomposition differed across litter qualities, which suggests that other variables, such as differing microbial communities, play a role in decomposition processes. Graphical abstractmore » « less
-
Abstract In the Central Great Plains of North America, fire suppression is causing transitions from grasslands to shrublands and woodlands. This woody encroachment alters plant community composition, decreases grassland biodiversity, undermines key ecosystem services, and is difficult to reverse. How native grazers affect woody encroachment is largely unknown, especially compared to domesticated grazers. Bison were once the most widespread megafauna in North America and are typically categorized as grazers, with negative effects on grasses that indirectly benefit woody plants. However, bison can negatively impact woody plants through occasional browsing and mechanical disturbance. This study reports on a 30‐year experiment at Konza Prairie Biological Station, a mesic grassland in the Central Great Plains of North America, under fire suppression and experimental presence/absence of bison. Based on remote sensing, deciduous tree canopy cover was lower with bison (6% grazed vs. 16% ungrazed). Shrub land cover showed no difference (42% grazed vs. 41% ungrazed), while herbaceous land cover was higher with bison (51% grazed vs. 40% ungrazed). Evergreen tree canopy cover (Juniperus virginianaL.), which decreases biodiversity and increases wildfire risk, was approximately 0% with bison compared to 4% without bison. In the survival trial ofJ. virginianaseedlings, we found a 40% overwinter mortality with bison, compared to 5% mortality without bison. Compared to ungrazed areas, native plant species richness was 97% and 38% higher in bison‐grazed uplands and lowlands, respectively. Species evenness and Shannon's index were higher in the bison treatment in uplands, but not in lowlands. Bison affected community composition, resulting in higher cover of short grass species and lower tree cover. While grazers are generally assumed to favor woody plants, we found that bison had the opposite effect at low fire frequencies. We argue that the large size of bison and their behaviors account for this pattern, including trampling, horning, and occasional browsing. From a conservation perspective, bison might hamper tree expansion and increase plant diversity in tallgrass prairies and similar grasslands.more » « less
An official website of the United States government

