Abstract The equatorial cold tongue region has not warmed up in response to historical radiative forcing in the real world, contrary to the strong warming often simulated by climate models. Here we demonstrate that climate models fail to represent one or both of the key processes driving observed sea surface temperature (SST) pattern formation: a realistic surface wind stress pattern shaping subsurface cooling through wind‐driven circulation changes, and effective connectivity between subsurface and surface temperatures via upwelling and mixing. Consequently, none of the models approximate the observed lack of cold tongue SST warming and strengthening of zonal SST gradient across the equatorial Pacific. Furthermore, those that come closest achieve this due to interhemispheric warming differences rather than equatorial dynamics as observed. Addressing different origins of subsurface cooling in observations and simulations, and how they connect to SST, will lead to improved understanding of tropical Pacific SST changes to date and how they will evolve in the future.
more »
« less
Uncertain future of sustainable fisheries environment in eastern boundary upwelling zones under climate change
Abstract Upwelling along ocean eastern boundaries is expected to intensify due to coastal wind strengthening driven by increasing land-sea contrast according to the Bakun hypothesis. Here, the latest high-resolution climate simulations that exhibit drastic improvements of upwelling processes reveal far more complex future upwelling changes. The Southern Hemisphere upwelling systems show a future strengthening in coastal winds with a rapid coastal warming, whereas the Northern Hemisphere coastal winds show a decrease with a comparable warming trend. The Bakun mechanism cannot explain these changes. Heat budget analysis indicates that temperature change in the upwelling region is not simply controlled by vertical Ekman upwelling, but also influenced by horizontal heat advection driven by strong near-coast wind stress curl that is neglected in the Bakun hypothesis and poorly represented by the low-resolution models in the Coupled Model Intercomparison Project. The high-resolution climate simulations also reveal a strong spatial variation in future upwelling changes, which is missing in the low-resolution simulations.
more »
« less
- Award ID(s):
- 2137684
- PAR ID:
- 10565859
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the boreal spring of 2023, an extreme coastal El Niño struck the coastal regions of Peru and Ecuador, causing devastating rainfalls, flooding, and record dengue outbreaks. Observations and ocean model experiments reveal that northerly alongshore winds and westerly wind anomalies in the eastern equatorial Pacific, initially associated with a record-strong Madden-Julian Oscillation and cyclonic disturbance off Peru in March, drove the coastal warming through suppressed coastal upwelling and downwelling Kelvin waves. Atmospheric model simulations indicate that the coastal warming in turn favors the observed wind anomalies over the far eastern tropical Pacific by triggering atmospheric deep convection. This implies a positive feedback between the coastal warming and the winds, which further amplifies the coastal warming. In May, the seasonal background cooling precludes deep convection and the coastal Bjerknes feedback, leading to the weakening of the coastal El Niño. This coastal El Niño is rare but predictable at 1 month lead, which is useful to protect lives and properties.more » « less
-
Abstract Deep-reaching warming along the boundary of the Antarctic Circumpolar Current and the subtropical gyre is a consistent feature of multidecadal observational estimates and projections of future climate. In the Indian basin, the maximum ocean heat content change is collocated with the powerful Agulhas Return Current (ARC) in the west and Subantarctic Front (SAF) in the east, forming a southeastward band we denote as the ARC–SAF. We find that this jet-confined warming is linked to a poleward shift of these strong currents via the thermal wind relation. Using a suite of idealized ocean-only and partially coupled climate model experiments, we show that strong global buoyancy flux anomalies consistently drive a poleward shift of the ARC–SAF circulation and the associated heat content change maximum. To better understand how buoyancy addition modifies this circulation in the absence of wind stress change, we next apply buoyancy perturbations only to certain regions. Buoyancy addition across the Indian and Pacific Oceans (including the ARC–SAF) gives rise to a strong baroclinic circulation response and modest poleward shift. In contrast, buoyancy addition in the North Atlantic drives a vertically coherent poleward shift of the ARC–SAF, which we suggest is associated with an ocean heat content perturbation communicated to the Southern Ocean via planetary waves and advected eastward along the ARC–SAF. Whereas poleward-shifting circulation and banded warming under climate change have been previously attributed to poleward-shifting winds in the Southern Ocean, we show that buoyancy addition can drive this circulation change in the Indian sector independent of changing wind stress. Significance StatementThis research aims to identify which changes at the atmosphere–ocean interface cause ocean warming localized within strong Southern Ocean currents under climate change. Whereas previous regional studies have emphasized the role of changes in Southern Hemisphere winds, we show that these currents are also sensitive to additional heat and freshwater input into the ocean—even in the faraway North Atlantic. Adding heat and freshwater shifts the currents southward, which is dynamically tied to the “band” of ocean warming seen in both long-term observations and climate change projections. We demonstrate that the warming climate will modify ocean circulation in unexpected ways; the consequences for the ocean’s ability to continue removing anthropogenic heat and carbon from the atmosphere remain poorly understood.more » « less
-
The last glacial period was punctuated by cold intervals in the North Atlantic region that culminated in extensive iceberg discharge events. These cold intervals, known as Heinrich Stadials, are associated with abrupt climate shifts worldwide. Here, we present CO2measurements from the West Antarctic Ice Sheet Divide ice core across Heinrich Stadials 2 to 5 at decadal-scale resolution. Our results reveal multi-decadal-scale jumps in atmospheric CO2concentrations within each Heinrich Stadial. The largest magnitude of change (14.0 ± 0.8 ppm within 55 ± 10 y) occurred during Heinrich Stadial 4. Abrupt rises in atmospheric CO2are concurrent with jumps in atmospheric CH4and abrupt changes in the water isotopologs in multiple Antarctic ice cores, the latter of which suggest rapid warming of both Antarctica and Southern Ocean vapor source regions. The synchroneity of these rapid shifts points to wind-driven upwelling of relatively warm, carbon-rich waters in the Southern Ocean, likely linked to a poleward intensification of the Southern Hemisphere westerly winds. Using an isotope-enabled atmospheric circulation model, we show that observed changes in Antarctic water isotopologs can be explained by abrupt and widespread Southern Ocean warming. Our work presents evidence for a multi-decadal- to century-scale response of the Southern Ocean to changes in atmospheric circulation, demonstrating the potential for dynamic changes in Southern Ocean biogeochemistry and circulation on human timescales. Furthermore, it suggests that anthropogenic CO2uptake in the Southern Ocean may weaken with poleward strengthening westerlies today and into the future.more » « less
-
Abstract Low-lying island nations like Indonesia are vulnerable to sea level Height EXtremes (HEXs). When compounded by marine heatwaves, HEXs have larger ecological and societal impact. Here we combine observations with model simulations, to investigate the HEXs and Compound Height-Heat Extremes (CHHEXs) along the Indian Ocean coast of Indonesia in recent decades. We find that anthropogenic sea level rise combined with decadal climate variability causes increased occurrence of HEXs during 2010–2017. Both HEXs and CHHEXs are driven by equatorial westerly and longshore northwesterly wind anomalies. For most HEXs, which occur during December-March, downwelling favorable northwest monsoon winds are enhanced but enhanced vertical mixing limits surface warming. For most CHHEXs, wind anomalies associated with a negative Indian Ocean Dipole (IOD) and co-occurring La Niña weaken the southeasterlies and cooling from coastal upwelling during May-June and November-December. Our findings emphasize the important interplay between anthropogenic warming and climate variability in affecting regional extremes.more » « less
An official website of the United States government

