As a non-destructive method for multi-element analysis, portable X-ray fluorescence spectrometry (pXRF) has the potential for broad archaeological application. Here, we employ pXRF for the compositional analysis of whiteware and stoneware sherds collected from Stoddartsville, a nineteenth century milling village built along the upper Lehigh River in northeast Pennsylvania. Our analysis demonstrates that we can use compositional data to distinguish between makers of macroscopically similar pottery. In turn, these data will expand our ability to source pottery from Stoddartsville, providing insight into the regional economy, the development of local ceramic industries, and consumer agency.
more »
« less
A Framework for Design Identification on Heritage Objects
A challenging problem in modern archaeology is to automatically identify fragmented heritage objects by their decorative full designs, such as the pottery sherds from Southeastern America. The difficulties of this problem lie in: 1) these pottery sherds are usually fragmented so that each sherd only covers a small portion of its underlying full design; 2) these sherds can be so highly degraded that curves may contain missing segments or become very shallow; and 3) curve patterns may overlap with each other from the making of these potteries. This paper presents a deep-learning based framework for matching a sherd with a database of known designs to find its underlying design. This framework contains three steps: 1) extracting curve pattern using an FCN-based curve pattern segmentation method from the digitized sherd's depth map, 2) matching a sherd with a non-composite (single copy of a design) pattern combining template matching algorithm with a dual-source CNN re-ranking method to find its underlying design, and 3) matching a sherd with a composite (multiple copies of a design) pattern using a Chamfer Matching based method. The framework was evaluated on a set of sherds from the heartland of the paddle-stamping tradition with a subset of known paddle-stamped designs of Pre-colonial southeastern North America. Extensive experimental results show the effectiveness of the proposed framework and algorithms.
more »
« less
- Award ID(s):
- 1658987
- PAR ID:
- 10172223
- Date Published:
- Journal Name:
- PEARC '19: Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (learning)
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Afro-Caribbean ware is Caribbean-made pottery manufactured both at the craft and industrial scale by enslaved and free potters of African descent. Previous sourcing studies have shown historic variation in centers of production and market distribution of these wares across the Caribbean. We used Neutron Activation Analysis (NAA) on a clay sample and 13 low-fired coarse earthenware sherds excavated from the historic-period Jackson Wall Manor site on Grand Cayman. We found that the Grand Cayman clay was compositionally inconsistent with any previously analysed ceramic sherds in the University of Missouri Research Reactor (MURR) NAA Caribbean database, and that the ceramic samples excavated on Grand Cayman showed high statistical correlation with Jamaican ceramic groups. These findings suggest that coarse earthenware on Grand Cayman was transported from Jamaica, a nearby colony with established potteries and markets, rather than being produced locally. Jamaican yabbas, which combined African and European manufacturing technique and forms, were imported into Grand Cayman to fit local needs.more » « less
-
Geometric Deep Learning for Shape Correspondence in Mass Customization by Three-Dimensional PrintingMany industries, such as human-centric product manufacturing, are calling for mass customization with personalized products. One key enabler of mass customization is 3D printing, which makes flexible design and manufacturing possible. However, the personalized designs bring challenges for the shape matching and analysis, owing to the high complexity and shape variations. Traditional shape matching methods are limited to spatial alignment and finding a transformation matrix for two shapes, which cannot determine a vertex-to-vertex or feature-to-feature correlation between the two shapes. Hence, such a method cannot measure the deformation of the shape and interested features directly. To measure the deformations widely seen in the mass customization paradigm and address the issues of alignment methods in shape matching, we identify the geometry matching of deformed shapes as a correspondence problem. The problem is challenging due to the huge solution space and nonlinear complexity, which is difficult for conventional optimization methods to solve. According to the observation that the well-established massive databases provide the correspondence results of the treated teeth models, a learning-based method is proposed for the shape correspondence problem. Specifically, a state-of-the-art geometric deep learning method is used to learn the correspondence of a set of collected deformed shapes. Through learning the deformations of the models, the underlying variations of the shapes are extracted and used for finding the vertex-to-vertex mapping among these shapes. We demonstrate the application of the proposed approach in the orthodontics industry, and the experimental results show that the proposed method can predict correspondence fast and accurate, also robust to extreme cases. Furthermore, the proposed method is favorably suitable for deformed shape analysis in mass customization enabled by 3D printing.more » « less
-
Building science gateways for humanities content poses new challenges to the science gateway community. Compared with science gateways devoted to scientific content, humanities-related projects usually require 1) processing data in various formats, such as text, image, video, etc., 2) constant public access from a broad audience, and therefore 3) reliable security, ideally with low maintenance. Many traditional science gateways are monolithic in design, which makes them easier to write, but they can be computationally inefficient when integrated with numerous scientific packages for data capture and pipeline processing. Since these packages tend to be single-threaded or nonmodular, they can create traffic bottlenecks when processing large numbers of requests. Moreover, these science gateways are usually challenging to resume development on due to long gaps between funding periods and the aging of the integrated scientific packages. In this paper, we study the problem of building science gateways for humanities projects by developing a service-based architecture, and present two such science gateways: the Moving Image Research Collections (MIRC) – a science gateway focusing on image analysis for digital surrogates of historical motion picture film, and SnowVision - a science gateway for studying pottery fragments in southeastern North America. For each science gateway, we present an overview of the background of the projects, and some unique challenges in their design and implementation. These two science gateways are deployed on XSEDE’s Jetstream academic clouding computing resource and are accessed through web interfaces. Apache Airavata middleware is used to manage the interactions between the web interface and the deep-learning-based (DL) backend service running on the Bridges graphics processing unit (GPU) cluster.more » « less
-
null (Ed.)We present an m^{4/3+o(1)} log W -time algorithm for solving the minimum cost flow problem in graphs with unit capacity, where W is the maximum absolute value of any edge weight. For sparse graphs, this improves over the best known running time for this problem and, by well-known reductions, also implies improved running times for the shortest path problem with negative weights, minimum cost bipartite b-matching when |b|_1 = O(m), and recovers the running time of the currently fastest algorithm for maximum flow in graphs with unit capacities (Liu-Sidford, 2020). Our algorithm relies on developing an interior point method–based framework which acts on the space of circulations in the underlying graph. From the combinatorial point of view, this framework can be viewed as iteratively improving the cost of a suboptimal solution by pushing flow around circulations. These circulations are derived by computing a regularized version of the standard Newton step, which is partially inspired by previous work on the unit-capacity maximum flow problem (Liu-Sidford, 2019), and subsequently refined based on the very recent progress on this problem (Liu-Sidford, 2020). The resulting step problem can then be computed efficiently using the recent work on l_p-norm minimizing flows (Kyng-Peng-Sachdeva-Wang, 2019). We obtain our faster algorithm by combining this new step primitive with a customized preconditioning method, which aims to ensure that the graph on which these circulations are computed has sufficiently large conductance.more » « less
An official website of the United States government

