skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 20, 2025

Title: Physiology, fast and slow: bacterial response to variable resource stoichiometry and dilution rate
ABSTRACT Microorganisms grow despite imbalances in the availability of nutrients and energy. The biochemical and elemental adjustments that bacteria employ to sustain growth when these resources are suboptimal are not well understood. We assessed howPseudomonas putidaKT2440 adjusts its physiology at differing dilution rates (to approximate growth rates) in response to carbon (C), nitrogen (N), and phosphorus (P) stress using chemostats. Cellular elemental and biomolecular pools were variable in response to different limiting resources at a slow dilution rate of 0.12 h−1, but these pools were more similar across treatments at a faster rate of 0.48 h−1. At slow dilution rates, limitation by P and C appeared to alter cell growth efficiencies as reflected by changes in cellular C quotas and rates of oxygen consumption, both of which were highest under P- and lowest under C- stress. Underlying these phenotypic changes was differential gene expression of terminal oxidases used for ATP generation that allows for increased energy generation efficiency. In all treatments under fast dilution rates, KT2440 formed aggregates and biofilms, a physiological response that hindered an accurate assessment of growth rate, but which could serve as a mechanism that allows cells to remain in conditions where growth is favorable. Our findings highlight the ways that microorganisms dynamically adjust their physiology under different resource supply conditions, with distinct mechanisms depending on the limiting resource at slow growth and convergence toward an aggregative phenotype with similar compositions under conditions that attempt to force fast growth. IMPORTANCEAll organisms experience suboptimal growth conditions due to low nutrient and energy availability. Their ability to survive and reproduce under such conditions determines their evolutionary fitness. By imposing suboptimal resource ratios under different dilution rates on the model organismPseudomonas putidaKT2440, we show that this bacterium dynamically adjusts its elemental composition, morphology, pools of biomolecules, and levels of gene expression. By examining the ability of bacteria to respond to C:N:P imbalance, we can begin to understand how stoichiometric flexibility manifests at the cellular level and impacts the flow of energy and elements through ecosystems.  more » « less
Award ID(s):
1930816
PAR ID:
10566289
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Schada_von_Borzyskowski, Lennart
Publisher / Repository:
American Society for Microbiology
Date Published:
Journal Name:
mSystems
Volume:
9
Issue:
8
ISSN:
2379-5077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract With the ongoing differential disruption of the biogeochemical cycles of major elements that are essential for all life (carbon, nitrogen, and phosphorus), organisms are increasingly faced with a heterogenous supply of these elements in nature. Given that photosynthetic primary producers form the base of aquatic food webs, impacts of changed elemental supply on these organisms are particularly important. One way that phytoplankton cope with the differential availability of nutrients is through physiological changes, resulting in plasticity in macromolecular and elemental biomass composition. Here, we assessed how the green algaChlamydomonas reinhardtiiadjusts its macromolecular (e.g., carbohydrates, lipids, and proteins) and elemental (C, N, and P) biomass pools in response to changes in growth rate and the modification of resources (nutrients and light). We observed thatChlamydomonasexhibits considerable plasticity in elemental composition (e.g., molar ratios ranging from 124 to 971 for C:P, 4.5 to 25.9 for C:N, and 15.1 to 61.2 for N:P) under all tested conditions, pointing to the adaptive potential ofChlamydomonasin a changing environment. Exposure to low light modified the elemental and macromolecular composition of cells differently than limitation by nutrients. These observed differences, with potential consequences for higher trophic levels, included smaller cells, shifts in C:N and C:P ratios (due to proportionally greater N and P contents), and differential allocation of C among macromolecular pools (proportionally more lipids than carbohydrates) with different energetic value. However, substantial pools of N and P remained unaccounted for, especially at fast growth, indicating accumulation of N and P in forms we did not measure. 
    more » « less
  2. Abstract A complex interplay of environmental variables impacts phytoplankton community composition and physiology. Temperature and nutrient availability are two principal factors driving phytoplankton growth and composition, but are often investigated independently and on individual species in the laboratory. To assess the individual and interactive effects of temperature and nutrient concentration on phytoplankton community composition and physiology, we altered both the thermal and nutrient conditions of a cold‐adapted spring phytoplankton community in Narragansett Bay, Rhode Island, when surface temperature was 2.6°C and chlorophyll > 9 μg L−1. Water was incubated in triplicate at −0.5°C, 2.6°C, and 6°C for 10 d. At each temperature, treatments included both nutrient amendments (N, P, Si addition) and controls (no macronutrients added). The interactive effects of temperature and resource availability altered phytoplankton growth and community structure. Nutrient amendments resulted in species sorting and communities dominated by larger species. Under replete nutrients, warming tripled phytoplankton growth rates, but under in situ nutrient conditions, increased temperature acted antagonistically, reducing growth rates by as much as 33%, suggesting communities became nutrient limited. The temperature–nutrient interplay shifted the relative proportions of each species within the phytoplankton community, resulting in more silica rich cells at decreasing temperatures, irrespective of nutrients, and C : N that varied based on resource availability, with nutrient limitation inducing a 47% increase in C : N at increasing temperatures. Our results illustrate how the temperature–nutrient interplay can alter phytoplankton community dynamics, with changes in temperature amplifying or exacerbating the nutrient effect with implications for higher trophic levels and carbon flux. 
    more » « less
  3. Abstract Biofilms can increase pathogenic contamination of drinking water, cause biofilm‐related diseases, alter the sediment erosion rate, and degrade contaminants in wastewater. Compared with mature biofilms, biofilms in the early‐stage have been shown to be more susceptible to antimicrobials and easier to remove. Mechanistic understanding of physical factors controlling early‐stage biofilm growth is critical to predict and control biofilm development, yet such understanding is currently incomplete. Here, we reveal the impacts of hydrodynamic conditions and microscale surface roughness on the development of early‐stagePseudomonas putidabiofilm through a combination of microfluidic experiments, numerical simulations, and fluid mechanics theories. We demonstrate that early‐stage biofilm growth is suppressed under high flow conditions and that the local velocity for early‐stageP. putidabiofilms (growth time < 14 h) to develop is about 50 μm/s, which is similar toP. putida's swimming speed. We further illustrate that microscale surface roughness promotes the growth of early‐stage biofilms by increasing the area of the low‐flow region. Furthermore, we show that the critical average shear stress, above which early‐stage biofilms cease to form, is 0.9 Pa for rough surfaces, three times as large as the value for flat or smooth surfaces (0.3 Pa). The important control of flow conditions and microscale surface roughness on early‐stage biofilm development, characterized in this study, will facilitate future predictions and managements of early‐stageP. putidabiofilm development on the surfaces of drinking water pipelines, bioreactors, and sediments in aquatic environments. 
    more » « less
  4. ABSTRACT Although alcohols are toxic to many microorganisms, they are good carbon and energy sources for some bacteria, including many pseudomonads. However, most studies that have examined chemosensory responses to alcohols have reported that alcohols are sensed as repellents, which is consistent with their toxic properties. In this study, we examined the chemotaxis of Pseudomonas putida strain F1 to n -alcohols with chain lengths of 1 to 12 carbons. P. putida F1 was attracted to all n -alcohols that served as growth substrates (C 2 to C 12 ) for the strain, and the responses were induced when cells were grown in the presence of alcohols. By assaying mutant strains lacking single or multiple methyl-accepting chemotaxis proteins, the receptor mediating the response to C 2 to C 12 alcohols was identified as McfP, the ortholog of the P. putida strain KT2440 receptor for C 2 and C 3 carboxylic acids. Besides being a requirement for the response to n -alcohols, McfP was required for the response of P. putida F1 to pyruvate, l -lactate, acetate, and propionate, which are detected by the KT2440 receptor, and the medium- and long-chain carboxylic acids hexanoic acid and dodecanoic acid. β-Galactosidase assays of P. putida F1 carrying an mcfP-lacZ transcriptional fusion showed that the mcfP gene is not induced in response to alcohols. Together, our results are consistent with the idea that the carboxylic acids generated from the oxidation of alcohols are the actual attractants sensed by McfP in P. putida F1, rather than the alcohols themselves. IMPORTANCE Alcohols, released as fermentation products and produced as intermediates in the catabolism of many organic compounds, including hydrocarbons and fatty acids, are common components of the microbial food web in soil and sediments. Although they serve as good carbon and energy sources for many soil bacteria, alcohols have primarily been reported to be repellents rather than attractants for motile bacteria. Little is known about how alcohols are sensed by microbes in the environment. We report here that catabolizable n -alcohols with linear chains of up to 12 carbons serve as attractants for the soil bacterium Pseudomonas putida , and rather than being detected directly, alcohols appear to be catabolized to acetate, which is then sensed by a specific cell-surface chemoreceptor protein. 
    more » « less
  5. Vital rates, including growth responses to environmental variability, are poorly characterized for the diverse taxa of heterotrophic bacteria (HBact) in marine ecosystems. Here, we evaluated the potential for combining molecular analyses with dilution experiments to assess taxon-specific growth (cell division) and net growth rates of HBact in natural waters. Two-treatment dilution experiments were conducted within situincubations under 3 environmental conditions in the California Current Ecosystem, at offshore and inshore sites during a warm upwelling-suppressed year (2014) and for normal inshore upwelling, representing a 33-fold primary production range. Relative sequence reads from 16S rRNA metabarcoding were normalized to total HBact counts from flow cytometry for community abundance and rate calculations. Composition varied from dominance of Alphaproteobacteria (56%) in oligotrophic offshore (SAR11) and mesotrophic inshore waters (SAR11 and Rhodobacteria) to Bacteriodes/Flavobacteria dominance (64%) and mixed sub-taxon importance (Polaribacter, Rhodobacteria,Formosa) during upwelling. Net growth rates in bottles, validated by comparison to ambient community net growth following a satellite-tracked drifter, varied from near steady state for offshore and inshore conditions to dynamic community changes during upwelling. Mean growth rates doubled (0.33 to 0.62 d-1) over the productivity range, and taxon estimates varied from -0.17 d-1(Formosa, offshore) to 1.53 d-1(SAR11, upwelling). Increasing growth of Flavobacteria and Rhodobacteria paralleled their abundance and dominance increases with productivity. SAR11 growth remained higher than average with increasing production, despite declining abundances. We highlight possible PCR or 16S rRNA gene copy biases of growth rate estimates as research needs for further applications of this approach. 
    more » « less