Plasmonic nanostructures with electrical connections have potential applications as new electro-optic devices due to their strong light–matter interactions. Plasmonic dimers with nanogaps between adjacent nanostructures are especially good at enhancing local electromagnetic (EM) fields at resonance for improved performance. In this study, we use optical extinction measurements and high-resolution electron microscopy imaging to investigate the thermal stability of electrically interconnected plasmonic dimers and their optical and morphological properties. Experimental measurements and finite difference time domain (FDTD) simulations are combined to characterize temperature effects on the plasmonic properties of large arrays of Au nanostructures on glass substrates. Experiments show continuous blue shifts of extinction peaks for heating up to 210°C. Microscopy measurements reveal these peak shifts are due to morphological changes that shrink nanorods and increase nanogap distances. Simulations of the nanostructures before and after heating find good agreement with experiments. Results show that plasmonic properties are maintained after thermal processing, but peak shifts need to be considered for device design.
more »
« less
Nonlinear mid-infrared meta-membranes
Nanophotonic structures have shown promising routes to controlling and enhancing nonlinear optical processes at the nanoscale. However, most nonlinear nanostructures require a handling substrate, reducing their application scope. Due to the underwhelming heat dissipation, it has been a challenge to evaluate the nonlinear optical properties of free-standing nanostructures. Here, we overcome this challenge by performing shot-controlled fifth harmonic generation (FHG) measurements on a SiC meta-membrane – a free-standing transmission metasurface with pronounced optical resonances in the mid-infrared (λres≈ 4,000 nm). Back focal plane imaging of the FHG diffraction orders and rigorous finite-difference time-domain simulations reveal at least two orders of magnitude enhancement of the FHG from the meta-membrane, compared to the unstructured SiC film of the same thickness. Single-shot measurements of the meta-membrane with varying resonance positions reveal an unusual spectral behavior that we explain with Kerr-driven intensity-dependent resonance dynamics. This work paves the way for novel substrate-less nanophotonic architectures.
more »
« less
- Award ID(s):
- 2339271
- PAR ID:
- 10566634
- Publisher / Repository:
- De Gruyter
- Date Published:
- Journal Name:
- Nanophotonics
- Volume:
- 13
- Issue:
- 18
- ISSN:
- 2192-8614
- Page Range / eLocation ID:
- 3395 to 3402
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, for the first time, the characterization of spin-casted thick Barium nano-hexaferrite film on GaN-on-SiC substrate over a broad frequency range of 30-110 GHz is presented. Real and imaginary parts of both permittivity and permeability of the ferrite/polymer film are computed from transmittance data obtained by using a free space quasi-optical millimeter wave spectrometer. The spin-casted composite film shows strong resonance in the Q band, and mixing the powder with polymer slightly shifts the resonance frequency lower compared to pure powder. The high temperature compatibility of GaN substrate enables us to run burn-out tests at temperatures up to 900°C. Significant shortening phenomenon of resonance linewidth after heat treatment was found. Linewidth is reduced from 2.8 kOe to 1.7 kOe. Experiment results show that the aforementioned film is a good candidate in applications of non-reciprocal ferrite devices like isolators, phase shifters, and circulators.more » « less
-
Abstract In the rapidly developing field of nanophotonics, machine learning (ML) methods facilitate the multi‐parameter optimization processes and serve as a valuable technique in tackling inverse design challenges by predicting nanostructure designs that satisfy specific optical property criteria. However, while considerable efforts have been devoted to applying ML for designing the overall spectral response of photonic nanostructures, often without elucidating the underlying physical mechanisms, physics‐based models remain largely unexplored. Here, physics‐empowered forward and inverse ML models to design dielectric meta‐atoms with controlled multipolar responses are introduced. By utilizing the multipole expansion theory, the forward model efficiently predicts the scattering response of meta‐atoms with diverse shapes and the inverse model designs meta‐atoms that possess the desired multipole resonances. Implementing the inverse design model, uniquely shaped meta‐atoms with enhanced higher‐order magnetic resonances and those supporting a super‐scattering regime of light‐matter interactions resulting in nearly five‐fold enhancement of scattering beyond the single‐channel limit are designed. Finally, an ML model to predict the wavelength‐dependent electric field distribution inside and near the meta‐atom is developed. The proposed ML based models will likely facilitate uncovering new regimes of linear and nonlinear light‐matter interaction at the nanoscale as well as a versatile toolkit for nanophotonic design.more » « less
-
Abstract This paper describes a tape nanolithography method for the rapid and economical manufacturing of flexible, wearable nanophotonic devices. This method involves the soft lithography of a donor substrate with air-void nanopatterns, subsequent deposition of materials onto the substrate surface, followed by direct taping and peeling of the deposited materials by an adhesive tape. Without using any sophisticated techniques, the nanopatterns, which are preformed on the surface of the donor substrate, automatically emerge in the deposited materials. The nanopatterns can then be transferred to the tape surface. By leveraging the works of adhesion at the interfaces of the donor substrate-deposited material-tape assembly, this method not only demonstrates sub-hundred-nanometer resolution in the transferred nanopatterns on an area of multiple square inches but also exhibits high versatility and flexibility for configuring the shapes, dimensions, and material compositions of tape-supported nanopatterns to tune their optical properties. After the tape transfer, the materials that remain at the bottom of the air-void nanopatterns on the donor substrate exhibit shapes complementary to the transferred nanopatterns on the tape surface but maintain the same composition, thus also acting as functional nanophotonic structures. Using tape nanolithography, we demonstrate several tape-supported plasmonic, dielectric, and metallo-dielectric nanostructures, as well as several devices such as refractive index sensors, conformable plasmonic surfaces, and Fabry-Perot cavity resonators. Further, we demonstrate tape nanolithography-assisted manufacturing of a standalone plasmonic nanohole film and its transfer to unconventional substrates such as a cleaved facet and the curved side of an optical fiber.more » « less
-
Experiments accessing extreme conditions at x-ray free electron lasers (XFELs) involve rapidly evolving conditions of temperature. Here, we report time-resolved, direct measurements of temperature using spectral streaked optical pyrometry of x-ray and optical laser-heated states at the High Energy Density instrument of the European XFEL. This collection of typical experiments, coupled with numerical models, outlines the reliability, precision, and meaning of time dependent temperature measurements using optical emission at XFEL sources. Dynamic temperatures above 1500 K are measured continuously from spectrally- and temporally-resolved thermal emission at 450–850 nm, with time resolution down to 10–100 ns for 1–200 μs streak camera windows, using single shot and integrated modes. Targets include zero-pressure foils free-standing in air and in vacuo, and high-pressure samples compressed in diamond anvil cell multi-layer targets. Radiation sources used are 20-fs hard x-ray laser pulses at 17.8 keV, in single pulses or 2.26 MHz pulse trains of up to 30 pulses, and 250-ns infrared laser single pulses. A range of further possibilities for optical measurements of visible light in x-ray laser experiments using streak optical spectroscopy are also explored, including for the study of x-ray induced optical fluorescence, which often appears as background in thermal radiation measurements. We establish several scenarios where combined emissions from multiple sources are observed and discuss their interpretation. Challenges posed by using x-ray lasers as non-invasive probes of the sample state are addressed.more » « less
An official website of the United States government

