skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on January 21, 2026

Title: Impact of thermal crosstalk on dependent failure rates of multilayer ceramic capacitors undergoing lifetime testing

Several research studies have investigated the degradation of BaTiO3-based dielectric capacitor materials, focusing on the impact of composition, defect chemistry, and microstructural design to limit the electromigration of oxygen vacancies under electric fields at finite temperatures. Electromigration can be a dominant mechanism that controls failure rates in the individual multilayer ceramic capacitor (MLCC) components in testing the reliability of failures with highly accelerated lifetime testing (HALT) to determine the mean time to failure of MLCCs surface mounted onto printed circuit boards (PCBs). Conventional assumptions often consider these failures as independent, with no interaction between components on the PCB. However, this study employs a Physics of Failure (PoF) approach to closely examine transient degradation and its impact on MLCC reliability, emphasizing thermal crosstalk and its influence on dependent and independent failure rates. Finite element analysis thermal modeling and infrared thermography were used to assess the impact of circuit layout and component spacing on heat dissipation and thermal crosstalk under various electrical stress conditions. The study distinguishes between dependent and independent failures under a HALT, quantified through a β′ factor reflecting common cause failures due to thermal crosstalk. Through a series of experimental and statistical analyses, the β′ factor is evaluated with respect to temperature, voltage, and component spacing. These insights highlight the importance of understanding the nature of the data in reliability testing of MLCCs and optimizing the layout design of high-density circuits to mitigate dependent failures, improving overall reliability and informing better design and packaging strategies.

 
more » « less
Award ID(s):
1841453
PAR ID:
10567283
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Journal of Applied Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
137
Issue:
3
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Advanced FinFET SRAMs undergo reliability degradation due to various front-end and back-end wearout mechanisms. The design of reliable SRAMs benefits from accurate wearout models that are calibrated by accelerated test. With respect to testing, the accelerated conditions which can help separate the dominant wearout mechanisms related to circuit failure is crucial for model calibration and reliability prediction. In this paper, the estimation of optimal accelerated test regions for a 14nm FinFET SRAM under various wearout mechanisms is presented. The dominant regions for specific mechanisms are compared and analyzed for effective testing. It is observed that for our SRAM example circuit only bias temperature instability (BTI) and middle-of-line time-dependent dielectric breakdown (MTDDB) have test regions where their failures can be isolated, while the other mechanisms can’t be extracted individually due to acceptable regions’ overlap. Meanwhile, the SRAM cell activity distribution has a small influence on test regions and selectivity. 
    more » « less
  2. Modern transistors such as FinFETs and gate-all-around FETs (GAAFETs) suffer from excessive heat confinement due to their small size and three-dimensional geometries, with limited paths to the thermal ambient. This results in device self-heating, which can reduce speed, increase leakage, and accelerate aging. This paper characterizes the temperature for both the 7nm FinFET and 5nm GAAFET sub-structures and analyzes its impact on circuit performance (delay and power) and reliability (bias temperature instability, hot carrier injection, and electromigration). On average, logic gates in a circuit heat up by 12K for 7nm SOI FinFET and by 17K for 5nm GAAFET designs. This rise in temperature accelerates delay degradation due to bias temperature instability and hot carrier injection by up to 25% in FinFET and 39% in GAAFET designs, and also degrades the electromigration-induced time to failure of wires by up to 38% in SOI FinFET and 45% in GAAFET technologies. 
    more » « less
  3. β-phase gallium oxide ( β-Ga2O3) has drawn significant attention due to its large critical electric field strength and the availability of low-cost high-quality melt-grown substrates. Both aspects are advantages over gallium nitride (GaN) and silicon carbide (SiC) based power switching devices. However, because of the poor thermal conductivity of β-Ga2O3, device-level thermal management is critical to avoid performance degradation and component failure due to overheating. In addition, for high-frequency operation, the low thermal diffusivity of β-Ga2O3 results in a long thermal time constant, which hinders the use of previously developed thermal solutions for devices based on relatively high thermal conductivity materials (e.g., GaN transistors). This work investigates a double-side diamond-cooled β-Ga2O3 device architecture and provides guidelines to maximize the device’s thermal performance under both direct current (dc) and high-frequency switching operation. Under high-frequency operation, the use of a β-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation overlayer (top-side cooling) because of the low thermal diffusivity of β-Ga2O3. 
    more » « less
  4. null (Ed.)
    Effective assessment of degradation induced by electromigration (EM) is necessary for the design of reliable circuits based on FinFET technology. In this paper, a new methodology is proposed where FinFET SRAM cell array activity is used to evaluate the resistance degradation due to EM. The implementation of this methodology consists of analysis of stress evolution, a time-dependent resistance model, cell array activity extraction, and a customized algorithm for cell array reliability evaluation. The stress model is derived from the material transport equation which contains the driving forces due to the gradient of vacancy concentration,temperature, hydrostatic stress, and EM itself. The time-dependent resistance shift describes the effect of stress evolution. The customized algorithm is applied to calculate the resistance degradation while considering the characteristics of metal wire arrays in SRAMs. The statistical degradation in a FinFET SRAM cell array reveals that, for the tested case, in addition to the percentage of the workload in various operating modes, the cell array activity distribution also affects EM degradation. More evenly distributed cell activity results in better EM reliability. 
    more » « less
  5. Abstract

    The investigation of statistical scaling in localization-induced failures dates back to da Vinci's speculation on the length effect on rope strength in 1500 s. The early mathematical description of statistical scaling emerged with the birth of the extreme value statistics. The most commonly known mathematical model for statistical scaling is the Weibull size effect, which is a direct consequence of the infinite weakest-link model. However, abundant experimental observations on various localization-induced failures have shown that the Weibull size effect is inadequate. Over the last two decades, two mathematical models were developed to describe the statistical size effect in localization-induced failures. One is the finite weakest-link model, in which the random structural resistance is expressed as the minimum of a set of independent discrete random variables. The other is the level excursion model, a continuum description of the finite weakest-link model, in which the structural failure probability is calculated as the probability of the upcrossing of a random field over a barrier. This paper reviews the mathematical formulation of these two models and their applications to various engineering problems including the strength distributions of quasi-brittle structures, failure statistics of micro-electromechanical systems (MEMS) devices, breakdown statistics of high– k gate dielectrics, and probability distribution of buckling pressure of spherical shells containing random geometric imperfections. In addition, the implications of statistical scaling for the stochastic finite element simulations and the reliability-based structural design are discussed. In particular, the recent development of the size-dependent safety factors is reviewed.

     
    more » « less