skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Estimation of the Optimal Accelerated Test Region for FinFET SRAMs Degraded by Front-End and Back-End Wearout Mechanisms
Advanced FinFET SRAMs undergo reliability degradation due to various front-end and back-end wearout mechanisms. The design of reliable SRAMs benefits from accurate wearout models that are calibrated by accelerated test. With respect to testing, the accelerated conditions which can help separate the dominant wearout mechanisms related to circuit failure is crucial for model calibration and reliability prediction. In this paper, the estimation of optimal accelerated test regions for a 14nm FinFET SRAM under various wearout mechanisms is presented. The dominant regions for specific mechanisms are compared and analyzed for effective testing. It is observed that for our SRAM example circuit only bias temperature instability (BTI) and middle-of-line time-dependent dielectric breakdown (MTDDB) have test regions where their failures can be isolated, while the other mechanisms can’t be extracted individually due to acceptable regions’ overlap. Meanwhile, the SRAM cell activity distribution has a small influence on test regions and selectivity.  more » « less
Award ID(s):
1700914
PAR ID:
10104487
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Design of Circuits and Integrated Systems
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accelerated lifetime tests are necessary for reliability evaluation of circuits and systems, but the parameters for choosing the test conditions are often unknown. Furthermore, reliability testing is generally performed on test structures that have different properties than actual circuits and systems, which may create inconsistencies in how circuits and systems work in reality. To combat this problem, we use ring oscillators, which are similar to circuits, based on the 14nm FinFET node as the circuit vehicle to extract wearout data. We explore the effects of testing time, sample size, and number of stages on the ability to detect failures for various test conditions, focusing on front-end time dependent dielectric breakdown, which is one of the most dominant wearout mechanisms. 
    more » « less
  2. null (Ed.)
    We build a modelling and simulation flow to study how the front-end wearout mechanisms affect the FinFET SRAM soft error rate. This flow incorporates process variation, such as device dimensions, and degradation parameters. We first checked the impact of process parameters on critical charge and soft error rate. It is found that a larger gate length and higher temperature help us obtain better reliability for a FinFET SRAM cell under radiation, with a higher Qcrit and lower SER. Then, the time-dependent shift of Qcrit and SER is displayed. Within its range between 0% and 50%, a lower duty ratio leads to worse reliability due to soft errors. Moreover, a higher transition rate causes worse reliability. 
    more » « less
  3. null (Ed.)
    FinFET SRAM cells suffer from front-end wearout mechanisms, such as bias temperature instability and hot carrier injection. In this paper, we built a library based on deep neural networks (DNNs) to speed up the process of simulating FinFET SRAM cells' degradation. This library consists of two parts. The first part calculates circuit configuration parameters, wearout parameters, and the other input variables for the DNN. The second part calls for the DNN to determine the shifted circuit performance metrics. A DNN with more than 99% accuracy is achieved with training data from standard Hspice simulations. The correctness of the DNN is also validated in the presence of input variations. With this library, the simulation speed is one hundred times faster than Hspice simulations. We can display the cell's degradation under various configurations easily and quickly. Also, the DNN-based library can help protect intellectual property without showing users the circuit's details. 
    more » « less
  4. This paper proposes a methodology to find optimal accelerated test regions for lifetime parameter estimation for not only the traditional reliability concern, frontend-of-line dielectric breakdown (FEOL TDDB), but also the newly emerging wearout mechanism, middle-of-line time dependent dielectric breakdown (MOL TDDB) in 14nm FinFET technology. The framework to find the optimal test regions is introduced; the error estimating methodology is discussed in detail. Three digital circuits are presented for evaluation and comparison. The optimal test regions depend on the circuit size as well as the types of standard cells in the circuits. To ensure accurate lifetime parameter estimation, both error from sampling and error from selectivity should be considered at the same time. As a general guideline, higher estimation accuracy will be achieved by testing gate TDDB lifetime parameters at higher voltages, while testing middle-of-line TDDB at higher temperatures. 
    more » « less
  5. null (Ed.)
    A convenient method based on deep neural networks and an evolutionary algorithm is proposed for the inverse design of FinFET SRAM cells. Inverse design helps designers who have less device physics knowledge obtain cell configurations that provide the desired performance metrics under selected wearout conditions, such as a set specific stress time and use scenario that creates a specific activity level (duty cycle and transition rate). The cell configurations being considered consists of various process parameters, such as gate length and fin height, in the presence of variations due to process and wearout. The front-end mechanisms related to wearout include negative bias temperature instability (NBTI), hot carrier injection (HCI), and random telegraph noise (RTN). The process of inverse design is achieved quickly and at good accuracy. 
    more » « less