skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Borosilicate glass with low dielectric loss and low permittivity for 5G/6G electronic packaging applications
A phase-separated borosilicate glass, with a relative permittivity ranging from 3 to 3.5 and a loss tangent as low as 5.6 × 10−4, is presented for packaging applications for the next generation of mobile communications. Ionic polarizability for each borosilicate composition was calculated from the Clausius–Mossotti relationship for both the vitreous and crystalline structures, and the polarizability difference between the two is proportional to the dielectric loss. Small amounts of alkali modifier were added to improve the glass processability, and the loss tangent increased to the 1–7 × 10−3 range. The resulting glass is phase-separated, which has no impact in the millimeter-wave spectrum, as the wavelengths are considerably greater than the length scale of each immiscible phase.  more » « less
Award ID(s):
1841453
PAR ID:
10567294
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIP Advances
Date Published:
Journal Name:
AIP Advances
Volume:
14
Issue:
11
ISSN:
2158-3226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. {"Abstract":["BSE mosaics of mushes and experimental products.\n\nAbstract: "We conducted experiments to study melt migration in crystal-rich mushes, with application to magma ascent within transcrustal magma reservoirs. Mushes with crystal volume fractions of 0.59 to 0.83 were prepared by hot-pressing crushed borosilicate glass mixed with different amounts quartz sand particles. Each experimental sample comprises stacked disks of mush and soda-lime glass, a proxy for crystal-free magma. Samples were subjected to confining pressures of 100 to 300 MPa and a temperature of 900°C (above the glass transition temperatures of the borosilicate and soda-lime glasses) for up to 6 h. The bottom and circumference of the mush and soda lime disks experience the confining pressure, but the top of the mush disks are at room pressure, resulting in a pore-pressure gradient across the mush layer. Following cooling and decompression, we determined the area fraction and morphology of soda-lime melt that migrated into the mush layer during experiments. Melt fraction is more strongly correlated to crystal fraction than pore-pressure gradient, increasing with crystal fraction before sharply decreasing as crystal fractions exceed 0.8. This change at 0.8 coincides with the transition from crystals in the mush moving during soda-lime migration to crystals forming a continuous rigid network. In our experiments, melt migration occurred by viscous fingering, but near the mobile-to-rigid transition, melt migration is enhanced by additional capillary action. Our results indicate that magma migration may peak when rigid mushes \u201cunlock\u201d to become mobile. This transition may mark an increase in magma migration, a potential precursor to volcanic unrest and eruption."\n\nImaging: "Transverse sections cut from the top and/or bottom of the vacuum hot-pressed mushes were polished, carbon-coated, and imaged in BSE mode using the JEOL JXA-8530FPlus Electron Probe Microanalyzer (EPMA) at UMN (15 kV, 10 nA). About ten 50x magnification images were taken per sample and then compiled into BSE mosaics using Affinity Designer. The different compositions of the borosilicate glass and crystalline materials are distinguishable by greyscale in BSE images. [...] Following each experiment, sample assemblies were cut longitudinally along the cylindrical axis to produce sections for microstructural analysis. Scored samples (pHi-19s, Int-20s, Lo-21s) were cut again to produce sections tangential to the sample cylinder. Cut sections were vacuum impregnated with EpoFix resin and hand-polished on diamond lapping film from 30 to 0.5 μm grit. Polished and carbon-coated samples were imaged in BSE mode in the EPMA at UMN (15 kV, 10 nA). The different compositions of the soda-lime glass, borosilicate glass, and crystalline materials are distinguishable by greyscale in BSE images. Twenty to forty 50x magnification images were taken per sample and then compiled into sample-scale BSE mosaics using Affinity Designer.""]} 
    more » « less
  2. Understanding the corrosion behavior of glasses in near-neutral environments is crucial for many technologies including glasses for regenerative medicine and nuclear waste immobilization. To maintain consistent pH values throughout experiments in the pH = 7 to 9 regime, buffer solutions containing tris(hydroxymethyl)aminomethane (“Tris”, or sometimes called THAM) are recommended in ISO standards 10993-14 and 23317 for evaluating biomaterial degradation and utilized throughout glass dissolution behavior literature—a key advantage being the absence of dissolved alkali/alkaline earth cations ( i.e. Na + or Ca 2+ ) that can convolute experimental results due to solution feedback effects. Although Tris is effective at maintaining the solution pH, it has presented concerns due to the adverse artificial effects it produces while studying glass corrosion, especially in borosilicate glasses. Therefore, many open questions still remain on the topic of borosilicate glass interaction with Tris-based solutions. We have approached this topic by studying the dissolution behavior of a sodium borosilicate glass in a wide range of Tris-based solutions at 65 °C with varied acid identity (Tris–HCl vs. Tris–HNO 3 ), buffer concentration (0.01 M to 0.5 M), and pH (7–9). The results have been discussed in reference to previous studies on this topic and the following conclusions have been made: (i) acid identity in Tris-based solutions does not exhibit a significant impact on the dissolution behavior of borosilicate glasses, (ii) ∼0.1 M Tris-based solutions are ideal for maintaining solution pH in the absence of obvious undesirable solution chemistry effects, and (iii) Tris–boron complexes can form in solution as a result of glass dissolution processes. The complex formation, however, exhibits a distinct temperature-dependence, and requires further study to uncover the precise mechanisms by which Tris-based solutions impact borosilicate glass dissolution behavior. 
    more » « less
  3. Abstract Iron oxide is commonly found in natural or industrial glass compositions and can exist as ferrous (Fe2+) or ferric (Fe3+) species, with their ratios depending on glass composition, temperature, pressure and the redox reactions during the glass forming process. The iron redox ratio plays an important role on silicate glass structures and consequently various properties. This work aims to study the effect of iron oxide, and particularly the iron redox ratio, on the structures of borosilicate and boroaluminosilicate glasses using molecular dynamics simulations with newly developed iron potential parameters that are compatible with the borosilicate potentials. The results provide detailed cation coordination states of both iron species and the effect of redox ratio on boron coordination and other structural features. Particularly, competition for charge compensating modifier cations (such as Na+) among the fourfold‐coordinated cations such as B3+, Al3+, and Fe3+is investigated by calculating the cation–cation pair distribution functions and coordination preferential ratios. The results show that the trivalent ferric ions, with a shorter Fe–O bond distance and better defined first coordiation shell with mainly four‐fold coordination, act as a glass former whereas the divalent ferrous ions mainly play the role of glass modifier. The ferrous/ferric ratio (Fe2+/Fe3+) was found to affect the glass chemistry and hence glass properties by regulating the amount of four‐coordinated boron, the fraction of non‐briding oxygen and other features. The results are compared with available experimental data to gain insights of the complex structures and charge compensation schemes of the glass system. 
    more » « less
  4. Abstract Glass for pharmaceutical packaging requires high chemical durability for the safe storage and distribution of newly developed medicines. In borosilicate pharmaceutical glasses which typically contain a mixture of different modifier ions (alkali or alkaline earth), the dependence of the chemical durability on alkaline earth oxide concentrations is not well understood. Here, we have designed a series of borosilicate glasses with systematic substitutions of CaO with MgO while keeping their total concentrations at 13 mol% and a fixed Na2O concentration of 12.7 mol%. We used these glasses to investigate the influence ofR = [MgO]/([MgO] + [CaO]) on the resistance to aqueous corrosion at 80°C for 40 days. It was found that this type of borosilicate glass undergoes both leaching of modifier ions through an ion exchange process and etching of the glass network, leading to dissolution of the glass surface. Based on the concentration analysis of the Si and B species dissolved into the solution phase, the dissolved layer thickness was found to increase from ~100 to ~170 nm asRincreases from 0 to 1. The depth profiling analysis of the glasses retrieved from the solution showed that the concentration of modifier ions (Na+, Ca2+, and Mg2+) at the interface between the solution and the corroded glass surface decreased to around 40%–60% of the corresponding bulk concentrations, regardless ofRand the leaching of modifier cations resulted in a silica‐rich layer in the surface. The leaching of Ca2+and Mg2+ions occurred within ~50 and <25 nm, respectively, from the glass surface and this thickness was not a strong function ofR. The leaching of Na+ions varied monotonically; the thickness of the Na+depletion layer increased from ~100 nm atR = 0 to ~200 nm atR = 1. Vibrational spectroscopy analysis suggested that the partial depletion of the ions may have caused some degree of the network re‐arrangement or re‐polymerization in the corroded layer. Overall, these results suggested that for the borosilicate glass, replacing [CaO] with [MgO] deteriorates the chemical durability in aqueous solution. 
    more » « less
  5. Data accompanying manuscript of the same name. Here we present results of high-temperature, high-pressure experiments that test the conditions leading to melt migration in mushes. Our samples were made up of juxtaposed pierces of soda-lime glass and a densified mixture of borosilicate glass and quartz sand (X = 0.65 to 0.83). When these materials are subjected to high temperatures and confining pressures (900°C, 200 MPa) they are proxies natural silicate melts and mushes, respectively (Ryan et al., 2022). We deformed these samples in torsion and observed migration of melt into the mush as a result of shear. In samples with intermediate (X = 0.75) and high (X = 0.83) mush crystal fractions melt-filled dikes formed and propagated within the mush. To our knowledge these are the first instances of dike formation and propagation in high-temperature, high-pressure deformation experiments. The dikes formed as a result of shear-induced dilation, a process that was recognized in other granular media ∼150 years ago (Reynolds, 1885) but is rarely invoked as a potential deformation behavior for mushes (Petford et al., 2020). We use our experimental results to identify the conditions for shear-induced dilation and diking in mushes, apply this analysis to an active volcanic system (Soufrière Hills Volcano, Montserrat, W.I.) and, finally, consider the role of dike formation and propagation in mushes in the rapid generation and transport of crystal-poor magmas." Imaging: BSE mosaics of transverse sections of each experimental product were captured using a JEOL JXA-8530FPlus Electron Probe Microanalyzer (15 kV, 10 nA). Compositional differences between quartz, olivine, soda lime and borosilicate mean each phase is distinguishable based on its greyscale. Each sample was ground, polished and imaged four to ten times to produce serial sections. The area fraction of soda-lime glass that migrated into the mush (A) was quantified by thresholding and filtering BSE mosaics using ImageJ (Abramoff et al., 2004). Euclidean distance maps were thresholded to identify regions of soda-lime glass that have dimensions less than and greater than the estimated interparticle distance (40 μm; Supplement 2). Aintru is the area fraction of soda-lime glass in the mush with dimensions greater than the interparticle distance. The spatial distribution of soda-lime glass in the mush was quantified by overlaying rectangular grids on the BSE mosaics and measuring the area fractions greater and less than the interparticle distance (Supplement 2). 
    more » « less