Abstract The aye-aye (Daubentonia madagascariensis) is one of the 25 most endangered primate species in the world, maintaining amongst the lowest genetic diversity of any primate measured to date. Characterizing patterns of genetic variation within aye-aye populations, and the relative influences of neutral and selective processes in shaping that variation, is thus important for future conservation efforts. In this study, we performed the first whole-genome scans for positive and balancing selection in the species, utilizing high-coverage population genomic data from newly sequenced individuals. We generated null thresholds for our genomic scans by creating an evolutionarily appropriate baseline model that incorporates the demographic history of this aye-aye population, and identified a small number of candidate genes. Most notably, a suite of genes involved in olfaction—a key trait in these nocturnal primates—were identified as experiencing long-term balancing selection. We also conducted analyses to quantify the expected statistical power to detect positive and balancing selection in this population using site frequency spectrum–based inference methods, once accounting for the potentially confounding contributions of population history, mutation and recombination rate variation, as well as purifying and background selection. This work, presenting the first high-quality, genome-wide polymorphism data across the functional regions of the aye-aye genome, thus provides important insights into the landscape of episodic selective forces in this highly endangered species.
more »
« less
Inferring the Demographic History of Aye-Ayes ( Daubentonia madagascariensis ) from High-Quality, Whole-Genome, Population-Level Data
Abstract The nocturnal aye-aye, Daubentonia madagascariensis, is one of the most elusive lemurs on the island of Madagascar. The timing of its activity and arboreal lifestyle has generally made it difficult to obtain accurate assessments of population size using traditional census methods. Therefore, alternative estimates provided by population genetic inference are essential for yielding much needed information for conservation measures and for enabling ecological and evolutionary studies of this species. Here, we utilize genomic data from 17 individuals—including 5 newly sequenced, high-coverage genomes—to estimate this history. Essential to this estimation are recently published annotations of the aye-aye genome which allow for variation at putatively neutral genomic regions to be included in the estimation procedures, and regions subject to selective constraints, or in linkage to such sites, to be excluded owing to the biasing effects of selection on demographic inference. By comparing a variety of demographic estimation tools to develop a well-supported model of population history, we find strong support for two demes, separating northern Madagascar from the rest of the island. Additionally, we find that the aye-aye has experienced two severe reductions in population size. The first occurred rapidly, ∼3,000 to 5,000 years ago, and likely corresponded with the arrival of humans to Madagascar. The second occurred over the past few decades and is likely related to substantial habitat loss, suggesting that the species is still undergoing population decline and remains at great risk for extinction.
more »
« less
- PAR ID:
- 10567378
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Genome Biology and Evolution
- Volume:
- 17
- Issue:
- 1
- ISSN:
- 1759-6653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The aye-aye (Daubentonia madagascariensis) is one of the 25 most endangered primate species in the world, maintaining amongst the lowest genetic diversity of any primate measured to date. Characterizing patterns of genetic variation within aye-aye populations, and the relative influences of neutral and selective processes in shaping that variation, is thus important for future conservation efforts. In this study, we performed the first whole-genome scans for recent positive and balancing selection in the species, utilizing high-coverage population genomic data from newly sequenced individuals. We generated null thresholds for our genomic scans by creating an evolutionarily appropriate baseline model that incorporates the demographic history of this aye-aye population, and identified a small number of candidate genes. Most notably, a suite of genes involved in olfaction — a key trait in these nocturnal primates — were identified as experiencing long-term balancing selection. We also conducted analyses to quantify the expected statistical power to detect positive and balancing selection in this population using site frequency spectrum-based inference methods, once accounting for the potentially confounding contributions of population history, recombination and mutation rate variation, and purifying and background selection. This work, presenting the first high-quality, genome-wide polymorphism data across the functional regions of the aye-aye genome, thus provides important insights into the landscape of episodic selective forces in this highly endangered species.more » « less
-
Aye-ayes (Daubentonia madagascariensis) are one of the 25 most critically endangered primate species in the world. Endemic to Madagascar, their small and highly fragmented populations make them particularly vulnerable to both genetic disease and anthropogenic environmental changes. Over the past decade, conservation genomic efforts have largely focused on inferring and monitoring population structure based on single nucleotide variants to identify and protect critical areas of genetic diversity. However, the recent release of a highly contiguous genome assembly allows, for the first time, for the study of structural genomic variation (deletions, duplications, insertions, and inversions) which are likely to impact a substantial proportion of the species’ genome. Based on whole-genome, short-read sequencing data from 14 individuals, >1,000 high-confidence autosomal structural variants were detected, affecting ∼240 kb of the aye-aye genome. The majority of these variants (>85%) were deletions shorter than 200 bp, consistent with the notion that longer structural mutations are often associated with strongly deleterious fitness effects. For example, two deletions longer than 850 bp located within disease-linked genes were predicted to impose substantial fitness deficits owing to a resulting frameshift and gene fusion, respectively; whereas several other major effect variants outside of coding regions are likely to impact gene regulatory landscapes. Taken together, this first glimpse into the landscape of structural variation in aye-ayes will enable future opportunities to advance our understanding of the traits impacting the fitness of this endangered species, as well as allow for enhanced evolutionary comparisons across the full primate clade.more » « less
-
The distribution of fitness effects (DFE) characterizes the range of selection coefficients from which new mutations are sampled, and thus holds a fundamentally important role in evolutionary genomics. To date, DFE inference in primates has been largely restricted to haplorrhines, with limited data availability leaving the other suborder of primates, strepsirrhines, largely under-explored. To advance our understanding of the population genetics of this important taxonomic group, we here map exonic divergence in aye-ayes (Daubentonia madagascariensis) – the only extant member of the Daubentoniidae family of the Strepsirrhini suborder. We further infer the DFE in this highly-endangered species, utilizing a recently published high-quality annotated reference genome, a well-supported model of demographic history, as well as both direct and indirect estimates of underlying mutation and recombination rates. The inferred distribution is generally characterized by a greater proportion of deleterious mutations relative to humans, providing evidence of a larger long-term effective population size. In addition however, both immune-related and sensory-related genes were found to be amongst the most rapidly evolving in the aye-aye genome.more » « less
-
ABSTRACT Ecological differences among species, particularly dispersal capacity and life history strategies, influence population response to environmental changes. Genetic simulations now allow us to directly incorporate this variation into models of past demographic changes. However, the impact of life history strategies in demographic inference has been far less explored relative to that of dispersal capacity. Here, we utilise individual‐based simulations of a non‐Wright‐Fisher population to ask whether differences in life history traits (the average age of first reproduction of individuals, the average adult mortality and the average number of mates per reproductive season) lead to consistent and predictable differences in the summary statistics of genetic diversity commonly used for simulation‐based parameter estimation and demographic inference. Using a Random Forest model, we also estimate three population parameters (variance in reproductive success, generation time and effective population size) from genome‐wide SNP variation for two bird species known to have distinct life history strategies. The results demonstrate that life history variation leads to predictable differences in patterns of genetic diversity: higher values of life history traits, representing extreme polygamy, long adult longevity and later onset of reproduction, are associated with higher variance in reproductive success, longer generation times, smaller effective population sizes and overall lower genetic diversity. Parameter estimates from empirical datasets also agree with the general expectation that polygamic species with later onset of reproduction and long adult longevity exhibit higher variance in reproductive success, longer generation times and smaller effective population sizes. Since the signal of life history differences is observed in the genetic summary statistics, we argue that simulation‐ and model‐based multi‐species demographic inference will gain from the incorporation of life history information.more » « less
An official website of the United States government
