skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 5, 2026

Title: Simulations of Life History Variation for Demographic Inference From Population Genomic Data
ABSTRACT Ecological differences among species, particularly dispersal capacity and life history strategies, influence population response to environmental changes. Genetic simulations now allow us to directly incorporate this variation into models of past demographic changes. However, the impact of life history strategies in demographic inference has been far less explored relative to that of dispersal capacity. Here, we utilise individual‐based simulations of a non‐Wright‐Fisher population to ask whether differences in life history traits (the average age of first reproduction of individuals, the average adult mortality and the average number of mates per reproductive season) lead to consistent and predictable differences in the summary statistics of genetic diversity commonly used for simulation‐based parameter estimation and demographic inference. Using a Random Forest model, we also estimate three population parameters (variance in reproductive success, generation time and effective population size) from genome‐wide SNP variation for two bird species known to have distinct life history strategies. The results demonstrate that life history variation leads to predictable differences in patterns of genetic diversity: higher values of life history traits, representing extreme polygamy, long adult longevity and later onset of reproduction, are associated with higher variance in reproductive success, longer generation times, smaller effective population sizes and overall lower genetic diversity. Parameter estimates from empirical datasets also agree with the general expectation that polygamic species with later onset of reproduction and long adult longevity exhibit higher variance in reproductive success, longer generation times and smaller effective population sizes. Since the signal of life history differences is observed in the genetic summary statistics, we argue that simulation‐ and model‐based multi‐species demographic inference will gain from the incorporation of life history information.  more » « less
Award ID(s):
1926928
PAR ID:
10647505
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
34
Issue:
22
ISSN:
0962-1083
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The mechanisms that contribute to variation in lifetime reproductive success are not well understood. One possibility is that telomeres, conserved DNA sequences at chromosome ends that often shorten with age and stress exposures, may reflect differences in vital processes or influence fitness. Telomere length often predicts longevity, but longevity is only one component of fitness and little is known about how lifetime reproductive success is related to telomere dynamics in wild populations. We examined the relationships between telomere length beginning in early life, telomere loss into adulthood and lifetime reproductive success in free-living house sparrows ( Passer domesticus ). We found that females, but not males, with longer telomeres during early life had higher lifetime reproductive success, owing to associations with longevity and not reproduction per year or attempt. Telomeres decreased with age in both sexes, but telomere loss was not associated with lifetime reproductive success. In this species, telomeres may reflect differences in quality or condition rather than the pace of life, but only in females. Sexually discordant selection on telomeres is expected to influence the stability and maintenance of within population variation in telomere dynamics and suggests that any role telomeres play in mediating life-history trade-offs may be sex specific. 
    more » « less
  2. The slow–fast continuum is a commonly used framework to describe variation in life-history strategies across species. Individual life histories have also been assumed to follow a similar pattern, especially in the pace-of-life syndrome literature. However, whether a slow–fast continuum commonly explains life-history variation among individuals within a population remains unclear. Here, we formally tested for the presence of a slow–fast continuum of life histories both within populations and across species using detailed long-term individual-based demographic data for 17 bird and mammal species with markedly different life histories. We estimated adult lifespan, age at first reproduction, annual breeding frequency, and annual fecundity, and identified the main axes of life-history variation using principal component analyses. Across species, we retrieved the slow–fast continuum as the main axis of life-history variation. However, within populations, the patterns of individual life-history variation did not align with a slow–fast continuum in any species. Thus, a continuum ranking individuals from slow to fast living is unlikely to shape individual differences in life histories within populations. Rather, individual life-history variation is likely idiosyncratic across species, potentially because of processes such as stochasticity, density dependence, and individual differences in resource acquisition that affect species differently and generate non-generalizable patterns across species. 
    more » « less
  3. 1. Identifying and accounting for unobserved individual heterogeneity in vital rates in demographic models is important for estimating population-level vital rates and identifying diverse life-history strategies, but much less is known about how this individual heterogeneity influences population dynamics. 2. We aimed to understand how the distribution of individual heterogeneity in reproductive and survival rates influenced population dynamics using vital rates from a Weddell seal population by altering the distribution of individual heterogeneity in reproduction, which also altered the distribution of individual survival rates through the incorporation of our estimate of the correlation between the two rates and assessing resulting changes in population growth. 3. We constructed an integral projection model (IPM) structured by age and reproductive state using estimates of vital rates for a long-lived mammal that has recently been shown to exhibit large individual heterogeneity in reproduction. Using output from the IPM, we evaluated how population dynamics changed with different underlying distributions of unobserved individual heterogeneity in reproduction. 4. Results indicate that the changes to the underlying distribution of individual heterogeneity in reproduction cause very small changes in the population growth rate and other population metrics. The largest difference in the estimated population growth rate resulting from changes to the underlying distribution of individual heterogeneity was less than 1%. 5. population level compared to the individual level. Although individual heterogeneity in reproduction may result in large differences in the lifetime fitness of individuals, changing the proportion of above- or below-average breeders in the population results in much smaller differences in annual population growth rate. For a long-lived mammal with stable and high adult-survival that gives birth to a single offspring, individual heterogeneity in reproduction has a limited effect on population dynamics. We posit that the limited effect of individual heterogeneity on population dynamics may be due to canalization of life-history traits. 
    more » « less
  4. Abstract Life history theory predicts that organisms allocate resources across physiological processes to maximize fitness. Under this framework, early life adversity (ELA)—which often limits energetic capital—could shape investment in growth and reproduction, as well as trade-offs between them, ultimately contributing to variation in evolutionary fitness. Using long-term demographic, behavioral, and physiological data for 2,100 females from a non-human primate population, we tested whether naturally-occurring ELA influences investment in the competing physiological demands of growth and reproduction. By analyzing ELA, growth, and reproduction in the same individuals, we also assessed whether adversity intensifies trade-offs between life history domains. We found that ELA influenced life history patterns, and was associated with modified growth, delayed reproductive maturity, and small adult body size. Different types of ELA sometimes had distinct reproductive outcomes—e.g., large group size was linked to faster reproductive rates, while low maternal rank predicted slower ones. Adversity also amplified trade-offs between growth and reproduction: small body size was a stronger predictor of delayed and reduced reproductive output in females exposed to ELA, compared to those not exposed. Finally, we examined how traits modified by ELA related to lifetime reproductive success. Across the population, starting reproduction earlier and maintaining a moderate reproductive rate conferred the greatest number of offspring surviving to reproductive maturity. These findings suggest that ELA impacts key life history traits as well as relationships between them, and can constrain individuals from adopting the most optimal reproductive strategy. Significance StatementEarly life adversity (ELA) can have lasting effects on evolutionary fitness (e.g., the number of surviving offspring an animal produces); however, the paths connecting ELA to fitness—for example by influencing growth, reproductive timing or rate, or trade-offs between these processes—remain unclear. Leveraging long-term behavioral, physiological, and demographic data from 2,100 female rhesus macaques, we found that ELA-exposed females exhibited growth and reproductive schedules associated with less-optimal lifetime fitness outcomes. Further, ELA intensified trade-offs between growth and reproduction, suggesting that affected individuals face steeper energetic constraints. Our findings highlight the long-lasting impacts of ELA on traits of evolutionary and biomedical importance in a non-human primate model with relevance to humans. 
    more » « less
  5. Abstract Life‐history traits are promising tools to predict species commonness and rarity because they influence a population's fitness in a given environment. Yet, species with similar traits can have vastly different abundances, challenging the prospect of robust trait‐based predictions. Using long‐term demographic monitoring, we show that coral populations with similar morphological and life‐history traits show persistent (decade‐long) differences in abundance. Morphological groups predicted species positions along two, well known life‐history axes (the fast‐slow continuum and size‐specific fecundity). However, integral projection models revealed that density‐independent population growth (λ) was more variable within morphological groups, and was consistently higher in dominant species relative to rare species. Within‐group λ differences projected large abundance differences among similar species in short timeframes, and were generated by small but compounding variation in growth, survival, and reproduction. Our study shows that easily measured morphological traits predict demographic strategies, yet small life‐history differences can accumulate into large differences in λ and abundance among similar species. Quantifying the net effects of multiple traits on population dynamics is therefore essential to anticipate species commonness and rarity. 
    more » « less