skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Free-energy orbital-free density functional theory: recent developments, perspective, and outlook
Abstract By summarizing the constraint-based development of orbital-free free-energy density functional approximations, we provide a perspective on progress over the last 15 years, the limitations of existing functionals, and the challenges awaiting resolution. We outline the chronology of the development of non-interacting and exchange-correlation free-energy orbital-free functionals and summarize the theoretical basis of existing local density approximation (LDA), second-order approximation, generalized gradient approximation (GGA), and meta-GGAs. We discuss limitations and challenges such as problems with thermodynamic derivatives, free-energy nonadditivity and the closely related issue of all-electron versus valence-only local pseudo-potential performance.  more » « less
Award ID(s):
2205521
PAR ID:
10567721
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Electronic Structure
ISSN:
2516-1075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we introduce the concept of a tunable noninteracting free-energy density functional and present two examples realized: (i) via a simple one-parameter convex combination of two existing functionals and (ii) via the construction of a generalized gradient approximation (GGA) enhancement factor that contains one free parameter and is designed to satisfy a set of incorporated constraints. Functional (i), constructed as a combination of the local Thomas–Fermi and a pseudopotential-adapted GGA for the noninteracting free-energy, has already demonstrated its practical usability for establishing the high temperature end of the equation of state of deuterium [Phys. Rev. B 104, 144104 (2021)] and CHON resin [Phys. Rev. E 106, 045207 (2022)] for inertial confinement fusion applications. Hugoniot calculations for liquid deuterium are given as another example of how the application of computationally efficient orbital-free density functional theory (OF-DFT) can be utilized with the employment of the developed functionals. Once the functionals have been tuned such that the OF-DFT Hugoniot calculation matches the Kohn–Sham solution at some low-temperature point, agreement with the reference Kohn–Sham results for the rest of the high temperature Hugoniot path is very good with relative errors for compression and pressure on the order of 2% or less. 
    more » « less
  2. null (Ed.)
    A major challenge in density functional theory (DFT) is the development of density functional approximations (DFAs) to overcome errors in existing DFAs, leading to more complex functionals. For such functionals, we consider roles of the noninteracting reference systems. The electron density of the Kohn–Sham (KS) reference with a local potential has been traditionally defined as being equal to the electron density of the physical system. This key idea has been applied in two ways: the inverse calculation of such a local KS potential for the reference from a given density and the direct calculation of density and energy based on given DFAs. By construction, the inverse calculation can yield a KS reference with the density equal to the input density of the physical system. In application of DFT, however, it is the direct calculation of density and energy from a DFA that plays a central role. For direct calculations, we find that the self-consistent density of the KS reference defined by the optimized effective potential (OEP), is not the density of the physical system, when the DFA is dependent on the external potential. This inequality holds also for the density of generalized KS (GKS) or generalized OEP reference, which allows a nonlocal potential, when the DFA is dependent on the external potential. Instead, the density of the physical system, consistent with a given DFA, is given by the linear response of the total energy with respect to the variation of the external potential. This is a paradigm shift in DFT on the use of noninteracting references: the noninteracting KS or GKS references represent the explicit computational variables for energy minimization, but not the density of the physical system for external potential-dependent DFAs. We develop the expressions for the electron density so defined through the linear response for general DFAs, demonstrate the results for orbital functionals and for many-body perturbation theory within the second-order and the random-phase approximation, and explore the connections to developments in DFT. 
    more » « less
  3. Kohn–Sham density functional theory has been the most popular method in electronic structure calculations. To fulfill the increasing accuracy requirements, new approximate functionals are needed to address key issues in existing approximations. It is well known that nonlocal components are crucial. Current nonlocal functionals mostly require orbital dependence such as in Hartree–Fock exchange and many-body perturbation correlation energy, which, however, leads to higher computational costs. Deviating from this pathway, we describe functional nonlocality in a new approach. By partitioning the total density to atom-centered local densities, a many-body expansion is proposed. This many-body expansion can be truncated at one-body contributions, if a base functional is used and an energy correction is approximated. The contribution from each atom-centered local density is a single finite-range nonlocal functional that is universal for all atoms. We then use machine learning to develop this universal atom-centered functional. Parameters in this functional are determined by fitting to data that are produced by high-level theories. Extensive tests on several different test sets, which include reaction energies, reaction barrier heights, and non-covalent interaction energies, show that the new functional, with only the density as the basic variable, can produce results comparable to the best-performing double-hybrid functionals, (for example, for the thermochemistry test set selected from the GMTKN55 database, BLYP based machine learning functional gives a weighted total mean absolute deviations of 3.33 kcal/mol, while DSD-BLYP-D3(BJ) gives 3.28 kcal/mol) with a lower computational cost. This opens a new pathway to nonlocal functional development and applications. 
    more » « less
  4. Free energy functionals of the Ginzburg–Landau type lie at the heart of a broad class of continuum dynamical models, such as the Cahn–Hilliard and Swift–Hohenberg equations. Despite the wide use of such models, the assumptions embodied in the free energy functionals frequently either are poorly justified or lead to physically opaque parameters. Here, we introduce a mathematically rigorous pathway for constructing free energy functionals that generalizes beyond the constraints of Ginzburg–Landau gradient expansions. We show that the formalism unifies existing free energetic descriptions under a single umbrella by establishing the criteria under which the generalized free energy reduces to gradient-based representations. Consequently, we derive a precise physical interpretation of the gradient energy parameter in the Cahn–Hilliard model as the product of an interaction length scale and the free energy curvature. The practical impact of our approach is demonstrated using both a model free energy function and the silicon–germanium alloy system. 
    more » « less
  5. Orbital-free density functional theory constitutes a computationally highly effective tool for modeling electronic structures of systems ranging from room-temperature materials to warm dense matter. Its accuracy critically depends on the employed kinetic energy (KE) density functional, which has to be supplied as an external input. In this work we consider several nonlocal and Laplacian-level KE functionals and use an external harmonic perturbation to compute the static density response at T=0 K in the linear and beyond-linear response regimes. We test for the satisfaction of exact conditions in the limit of uniform densities and for how approximate KE functionals reproduce the density response of realistic materials (e.g., Al and Si) against the Kohn-Sham DFT reference, which employs the exact KE. The results illustrate that several functionals violate exact conditions in the uniform electron gas (UEG) limit. We find a strong correlation between the accuracy of the KE functionals in the UEG limit and in the strongly inhomogeneous case. This empirically demonstrates the importance of imposing the limit of UEG response for uniform densities and validates the use of the Lindhard function in the formulation of kernels for nonlocal functionals. This conclusion is substantiated by additional calculations for bulk aluminum (Al) with a face-centered cubic (fcc) lattice and silicon (Si) with an fcc lattice, body-centered cubic (bcc) lattice, and semiconducting crystal diamond state. The analysis of fcc Al, and fcc as well as bcc Si data follows closely the conclusions drawn for the UEG, allowing us to extend our conclusions to realistic systems that are subject to density inhomogeneities induced by ions. 
    more » « less