Magnetically responsive, mechanically flexible microstructures are desirable for applications ranging from smart sensors to remote-controlled actuation for surgery or robotics. Embedding magnetic nanoparticles into a thin matrix of elastic material enables high flexibility while exploiting the magnetic response of the individual particles. However, in the ultrathin limit of such nanocomposite materials, the particles become too small to sustain a permanent dipole moment. This implies that now large magnetic field gradients are required for actuation, which are difficult to achieve with externally applied fields. Here, we demonstrate through experiment and simulation that monolayer sheets of close-packed paramagnetic nanoparticles in a uniform applied field can generate large local field gradients through particle interactions. As a result, a strong collective magnetization is obtained that leads to large deflections of freestanding sheets already in moderate applied fields. Exploiting the vector nature of the applied field, we furthermore find that it is possible to induce more complex curvature and twist the sheets. Finally, we show that paramagnetic nanoparticle monolayers applied as coatings can generate sufficient force to deflect strips of nonmagnetic material that is several orders of magnitude thicker. 
                        more » 
                        « less   
                    This content will become publicly available on January 1, 2026
                            
                            Artificial chemotaxis under electrodiffusiophoresis
                        
                    
    
            Hypothesis Through a large parameter space, electric fields can tune colloidal interactions and forces leading to diverse static and dynamical structures. So far, however, field-driven interactions have been limited to dipole-dipole and hydrodynamic contributions. Nonetheless, in this work, we propose that under the right conditions, electric fields can also induce interactions based on local chemical fields and diffusiophoretic flows. Experiments Herein, we present a strategy to generate and measure 3D chemical gradients under electric fields. In this approach, faradaic reactions at electrodes induce global pH gradients that drive long-range transport through electrodiffusiophoresis. Simultaneously, the electric field induces local pH gradients by driving the particle's double layer far from equilibrium. Findings As a result, while global pH gradients lead to 2D focusing away from electrodes, local pH gradients induce aggregation in the third dimension. Evidence points to a mechanism of interaction based on diffusiophoresis. Interparticle interactions display a strong dependence on surface chemistry, zeta potential and diameter of particles. Furthermore, pH gradients can be readily tuned by adjusting the voltage and frequency of the electric field. For large Péclet numbers, we observed a collective chemotactic-like collapse of particles. Remarkably, such collapse occurs without reactions at a particle's surface. By mixing particles with different sizes, we also demonstrate, through experiments and Brownian dynamics simulations, the emergence of non-reciprocal interactions, where small particles are more drawn towards large ones. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2239361
- PAR ID:
- 10568213
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Colloid and Interface Science
- Volume:
- 677
- Issue:
- PB
- ISSN:
- 0021-9797
- Page Range / eLocation ID:
- 171 to 180
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We report a model to predict equilibrium density profiles for different shaped colloids in two-dimensional liquid, nematic, and crystal states in nonuniform external fields. The model predictions are validated against Monte Carlo simulations and optical microscopy experiments for circular, square, elliptical, and rectangular colloidal particles in AC electric fields between parallel electrodes. The model to predict the densities of all states of different shaped particles is based on a balance of the local quasi-2D osmotic pressure against a compressive force due to induced dipole-field interactions. The osmotic force balance employs equations of state for hard ellipse liquid, nematic, and crystal state osmotic pressures, which are extended to additional particle shapes. The resulting simple analytical model is shown to accurately predict particle densities within liquid, liquid crystal, and crystal states for a broad range of particle shapes, system sizes, and field conditions. These findings provide a basis for quantitative design and control of fields to assemble and reconfigure colloidal particles in interfacial materials and devices.more » « less
- 
            Colloids can be used either as model systems for directed assembly or as the necessary building blocks for making functional materials. Previous work primarily focused on assembling colloids under a single external field, where controlling particle−particle interactions is limited. This work presents results under a combination of electric and magnetic fields. When these two fields are orthogonally applied, we can independently tune the magnitude and direction of the dipolar attraction and repulsion between the particles. As a result, we obtain well-aligned, highly dense, but individually separated linear chains at intermediate particle concentrations. Both the inter- and intrachain spacings can be tuned by adjusting the particle concentration and relative strengths of both fields. At high particle concentrations and by tuning the electric field frequency, the individual microspheres can assemble into colloidal oligomers such as trimers, tetramers, heptamers, and nonamers in response to the electric field due to the synergy between dipolar and electrohydrodynamic interactions. These oligomers, in turn, serve as building blocks for making hierarchical structures with finer architectures upon superimposing a one-dimensional (1D) magnetic field. In addition to experiments, Monte Carlo (MC) simulations have been performed on colloids confined near the electrode, interacting through a Stockmayer-like potential. They faithfully reproduce key observations in the experiments. Our work demonstrates the potential of using orthogonal electric and magnetic fields to assemble diversified types of highly aligned structures for applications in high-strength composites, optical materials, or structured battery electrodes.more » « less
- 
            Recent experimental studies have utilized AC electric fields and electrochemical reactions in multicomponent electrolyte solutions to control colloidal assembly. However, theoretical investigations have thus far been limited to binary electrolytes and have overlooked the impact of electrochemical reactions. In this study, we address these limitations by analyzing a system with multicomponent electrolytes, while also relaxing the assumption of ideally blocking electrodes to capture the effect of surface electrochemical reactions. Through a regular perturbation analysis in the low-applied-potential regime, we solve the Poisson–Nernst–Planck equations and obtain effective equations for electrical potential and ion concentrations. By employing a combination of numerical and analytical calculations, our analysis reveals a significant finding: electrochemical reactions alone can generate asymmetric rectified electric fields (AREFs), i.e., time-averaged, long-range electric fields, even when the diffusivities of the ionic species are equal. This finding expands our understanding beyond the conventional notion that AREFs arise solely from diffusivity contrast. Furthermore, we demonstrate that AREFs induced by electrochemical reactions can be stronger than those resulting from asymmetric diffusivities. Additionally, we report the emergence of asymmetric rectified concentration fields (ARCFs), i.e., time-averaged, long-range concentration fields, which supports the electrodiffusiophoresis mechanism of colloidal assembly observed in experiments. We also derive analytical expressions for AREFs and ARCFs, emphasizing the role of imbalances in ionic strength and charge density, respectively, as the driving forces behind their formation. The results presented in this article advance the field of colloidal assembly and also have implications for improved understanding of electrolyte transport in electrochemical devices.more » « less
- 
            Abstract Electroosmosis on nonuniformly charged surfaces often gives rise to intriguing flow behaviors, which can be utilized in applications such as mixing processes and designing micromotors. Here, we demonstrate nonuniform electroosmosis induced by electrochemical reactions. Water electrolysis creates pH gradients near the electrodes that cause a spatiotemporal change in the wall zeta potential, leading to nonuniform electroosmosis. Such nonuniform EOFs induce multiple vortices, which promote the continuous accumulation of particles that subsequently form a colloidal band. The band develops vertically into a “wall” of particles that spans from the bottom to the top surface of the chamber. Such a flow‐driven colloidal band can be potentially used in colloidal self‐assembly and separation processes irrespective of the particle surface properties. For instance, we demonstrate these vortices can promote rapid segregation of soft colloids such as oil droplets and fat globules.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
