skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring facilitation strategies to support socially shared regulation in a problem-based learning game
Successful problem-based learning (PBL) often requires students to collectively regulate their learning processes as a group and engage in socially shared regulation of learning (SSRL). This paper focuses on how facilitators supported SSRL in the context of middle-school game-based PBL. Using conversation analysis, this study analyzed text-based chat messages of facilitators and students collected during gameplay. The analysis revealed direct modeling strategies such as performing regulative processes, promoting group awareness, and dealing with contingency as well as indirect strategies including prompting questions and acknowledgment of regulation, and the patterns of how facilitation faded to yield responsibilities to students to regulate their own learning. The findings will inform researchers and practitioners to design prompts and develop technological tools such as adaptive scaffolding to support SSRL in PBL or other collaborative inquiry processes.  more » « less
Award ID(s):
1839966
PAR ID:
10568472
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
International Forum of Educational Technology & Society
Date Published:
Journal Name:
Education Technology & Societty
ISSN:
1436-4522
Subject(s) / Keyword(s):
Game-based learning Problem-based learning Socially shared regulation Facilitation Collaborative inquiry Conversation analysis
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Problem-based learning (PBL) has been effectively used within BME education, though there are several challenges in its implementation within courses with larger enrollments. Furthermore, the sudden transition to online learning from the COVID-19 pandemic introduced additional challenges in creating a similar PBL experience in an online environment. Online constrained PBL was implemented through asynchronous modules and synchronous web conferencing with rotating facilitators. Overall, facilitators perceived web conferencing facilitation to be similar to in-person, but noted that students were more easily “hidden” or distracted. Students did not comment on web conferencing facilitation specifically, but indicated the transition to online PBL was smooth. Course instructors identified that a fully synchronous delivery as well as modifications of Group Meeting Minutes assignments as potential modifications for future offerings. Future work will aim to address the perceptions and effectiveness of web conferencing facilitation for PBL courses within an undergraduate BME curriculum, as web conferencing could prove to be another significant breakthrough in addressing challenges of problem-based learning courses. 
    more » « less
  2. In problem-based learning (PBL), individual differences in students’ use of metacognition and self-regulation skills exist and calls for extensive research in postsecondary STEM education. This study focuses on students’ uncertainty management in PBL. A scale of the uncertainty management in PBL (UM-PBL) was developed. Exploratory factor analysis was conducted and showed that the UM-PBL has substantial reliability and a total of 14 items across three constructs of a) perception of uncertainty in learning to solve problems, b) self-efficacy in and c) strategy for uncertainty management. Gender differences in the first two constructs were found, confirming its known-group validation. Students’ problem-solving scores were positively correlated with scores of the first two constructs, suggesting its predictability of its relationship with academic performance. 
    more » « less
  3. In college cybersecurity education, problem-based learning has been introduced to promote student agency in solving a complex problem. However, a dilemma of balancing the student agency persist and previous research has focused on students’ cognitive, metacognitive, and regulatory to enhance the efficacy of PBL. Given the importance of students’ self-awareness of their agency, this study suggests a concept of meta-agency as an essential learner characteristic that influences the effectiveness of student agency in PBL. Four dimensions of meta-agency, perceptions of productive struggle, expectation alignment between instructor and students, strategies for regulating agency, and familiarity with PBL tasks, were qualitatively explored with student interview data. Features of meta-agency and how students’ meta-agency level develop through cybersecurity PBL sessions were further investigated. 
    more » « less
  4. null (Ed.)
    To date, there are currently many variations of inquiry-based instruction including problem-based learning (PBL), lecture prior to problem solving, and case-based learning (CBL). While each claim to support problem-solving, they also include different levels of student- centeredness and instructor support. From an educational perspective, further clarity is needed to determine which model best supports learning outcomes such as conceptual knowledge, causal reasoning, and self-efficacy. While various meta-analyses have been conducted to ascertain how inquiry-based instruction compares with lecture-based approaches, there are few studies that directly compare these methods. To address this gap, this study looked at the effects of PBL, lecture prior to problem-solving, and CBL on students conceptual knowledge, causal reasoning, and self-efficacy (N = 91). While no significant difference was found on self-efficacy, the results found that learners in the PBL group performed highest on conceptual knowledge. In terms of causal reasoning, the PBL group outperformed other conditions on correctly identified connections. However, the PBL condition also had the highest number of incorrectly identified concepts. Implications for theory and practice are also discussed. 
    more » « less
  5. Abstract This paper provides an experience report on a co‐design approach with teachers to co‐create learning analytics‐based technology to support problem‐based learning in middle school science classrooms. We have mapped out a workflow for such applications and developed design narratives to investigate the implementation, modifications and temporal roles of the participants in the design process. Our results provide precedent knowledge on co‐designing with experienced and novice teachers and co‐constructing actionable insight that can help teachers engage more effectively with their students' learning and problem‐solving processes during classroom PBL implementations. Practitioner notesWhat is already known about this topicSuccess of educational technology depends in large part on the technology's alignment with teachers' goals for their students, teaching strategies and classroom context.Teacher and researcher co‐design of educational technology and supporting curricula has proven to be an effective way for integrating teacher insight and supporting their implementation needs.Co‐designing learning analytics and support technologies with teachers is difficult due to differences in design and development goals, workplace norms, and AI‐literacy and learning analytics background of teachers.What this paper addsWe provide a co‐design workflow for middle school teachers that centres on co‐designing and developing actionable insights to support problem‐based learning (PBL) by systematic development of responsive teaching practices using AI‐generated learning analytics.We adapt established human‐computer interaction (HCI) methods to tackle the complex task of classroom PBL implementation, working with experienced and novice teachers to create a learning analytics dashboard for a PBL curriculum.We demonstrate researcher and teacher roles and needs in ensuring co‐design collaboration and the co‐construction of actionable insight to support middle school PBL.Implications for practice and/or policyLearning analytics researchers will be able to use the workflow as a tool to support their PBL co‐design processes.Learning analytics researchers will be able to apply adapted HCI methods for effective co‐design processes.Co‐design teams will be able to pre‐emptively prepare for the difficulties and needs of teachers when integrating middle school teacher feedback during the co‐design process in support of PBL technologies. 
    more » « less