skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanical and corrosion properties of Al2O3/7075 aluminum matrix composites prepared by additive friction stir deposition
Abstract Additive Friction stir deposition (AFSD) has been extensively utilized for processing Al alloys. The properties of the Al depositions under as-fabricated state, including mechanical strength and corrosion resistance, are typically inferior compared to the base material, especially for heat-treatable alloys. In this research, multilayers of Al7075 composites, reinforced by ceramic particles, were processed by AFSD to evaluate the effect of using feedstock materials containing reinforcing particles on the properties of the deposition. For comparison, a bare Al7075 part was also processed by AFSD under the same conditions. The results of mechanical testing revealed a significant reduction in the microhardness, tensile strength and compression stress of the bare alloy after deposition. However, the composite deposition exhibited only a slight decrease in the properties compared to its feedstock material. Additionally, the corrosion resistance of the composite enhanced after AFSD, in contrast to the bare alloy, where the corrosion resistance deteriorated. Microstructural analysis showed a uniform distribution of the reinforcing particles in the matrix for the deposition, closely resembling that of the feedstock composite. This, along with grain refinement and minimal change in precipitates, were the reasons for the minimum changes in mechanical properties, as well as the improvement in corrosion resistance.  more » « less
Award ID(s):
2052810
PAR ID:
10568885
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Progress in Additive Manufacturing
Volume:
10
Issue:
9
ISSN:
2363-9512
Format(s):
Medium: X Size: p. 6167-6181
Size(s):
p. 6167-6181
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Additive friction stir deposition (AFSD) is a novel additive manufacturing technique that enables the fabrication of components in the solid state. Given the benefits of AFSD, understanding the behavior of various feedstock materials after undergoing the AFSD process is crucial for optimizing their performance in structural applications. This study aims to evaluate the effects of AFSD on an Al–Mg alloy, Al5086, comparing it to its initial H32 condition to assess the changes in mechanical properties, microstructure, corrosion resistance, microhardness, and electrical conductivity. Tensile testing showed a 23% reduction in yield strength for as-deposited samples, while ultimate tensile strength remained comparable to the feedstock. Ductility improved significantly, with elongation to failure increasing by 77%, attributed to grain refinement and dynamic recovery. Microhardness decreased by 16% in lower layers due to thermal exposure, but electrical conductivity remained stable, indicating minimal solute atom redistribution. The Nitric Acid Mass Loss Test (NAMLT) revealed a 245% increase in corrosion rate for the AFSD material, linked to the higher density of grain boundaries acting as pathways for corrosion. These findings highlight AFSD’s potential for improving ductility and formability. However, they underscore the need for optimization to reduce corrosion susceptibility and address mechanical strength trade-offs. Future work should focus on fine-tuning process parameters or implementing post-treatment methods to enhance corrosion and mechanical performance. 
    more » « less
  2. The solid-state additive friction stir deposition (AFSD) process is a layer-by-layer metal 3D-printing technology. In this study, AFSD is used to fabricate Al–Cu–Li 2050 alloy parts. The hardness values for various regions of the as-deposited built parts are measured, and the results are contrasted with those of the feedstock material. The as-fabricated Al2050 parts are found to have a unique hardness distribution due to the location-specific variations in the processing temperature profile. The XRD results indicate the presence of the secondary phases in the deposited parts, and EDS mapping confirms the formation of detectable alloying particles in the as-deposited Al2050 matrix. The AFSD thermal–mechanical process causes the unique hardness distribution and the reduced microhardness level in the AFSD components, in contrast to those of the feedstock material. 
    more » « less
  3. Abstract Supersaturated solid solutions of Al and corrosion-resistant alloying elements (M: V, Mo, Cr, Ti, Nb), produced by non-equilibrium processing techniques, have been reported to exhibit high corrosion resistance and strength. The corrosion mechanism for such improved corrosion performance has not been well understood. We present a fundamental understanding of the role of V in corrosion of an Al-V alloy, which will provide a theoretical background for developing corrosion-resistant Al alloys. High-energy ball milling of the elemental powder of Al and V produced an in situ consolidated Al-V alloy, which exhibited high solid solubility of V. The corrosion resistance of Al-V alloy was significantly higher than that of pure Al, which was attributed to the (1) enrichment of V at the passive film/substrate interface, (2) incorporation of V into the passive film, and (3) deposition of V on the iron-containing cathodic particles and therefore, retardation of cathodic reaction. 
    more » « less
  4. null (Ed.)
    In this study, a compact cold sprayed (CS) Ti coating was deposited on Mg alloy using a high pressure cold spray (HPCS) system. The wear and corrosion behavior of the CS Ti coating was compared with that of CS Al coating and bare Mg alloy. The Ti coating yielded lower wear rate compared to Al coating and Mg alloy. Electrochemical impedance spectroscopy (EIS) and cyclic potentiodynamic polarization (CPP) tests revealed that CS Ti coating can substantially reduce corrosion rate of AZ31B in chloride containing solutions compared to CS Al coating. Interestingly, Ti-coated Mg alloy demonstrated negative hysteresis loop, depicting repassivation of pits, in contrast to AZ31B and Al-coated AZ31B with positive hysteresis loops where corrosion potential (Ecorr) > repassivation potential (Erp); indicating irreversible growth of pits. AZ31B and Al-coated AZ31B were most susceptible to pitting corrosion, while Ti-coated Mg alloy indicated noticeable resistance to pitting in 3.5 wt % NaCl solution. In comparison to Al coating, Ti coating considerably separated the AZ31BMg alloy surface from the corrosive electrolyte during long term immersion test for 11 days. 
    more » « less
  5. Nickel-based alloys, Alloys 625 and 718, are widely used in the aerospace industry due to their excellent corrosion resistance and high strength at elevated temperatures. Recently, these alloys have been utilized to manufacture rocket engine components using additive manufacturing (AM) technologies such as laser powder bed fusion (LPBF) and powder-blown laser-based directed energy deposition (DED). These technologies offer faster and more cost-effective production while enabling the fabrication of near-net-shape parts that are subsequently joined by welding. However, solidification cracking susceptibility varies significantly between AM and conventionally processed materials, and limited weldability characterization has been conducted on AM-fabricated materials. This study assesses the weld solidification cracking susceptibility of Alloys 625 and 718 produced by wrought (mill-rolled), LPBF, and DED using transverse varestraint testing, Scheil-Gulliver simulations, the Crack Susceptibility Index (CSI), and the Flow Resistance Index (FRI). Transverse varestraint testing revealed that AM parts exhibited higher susceptibility due to the presence of larger and elongated grains in the fusion zone, affecting the weld solidification cracking response. In Alloy 625, the LPBF condition exhibited the highest maximum crack distance (MCD) of 2.35 ± 0.16 mm, compared to 1.56 ± 0.06 mm for wrought and 1.72 ± 0.10 mm for DED. Similarly, in Alloy 718, the DED condition showed the highest MCD of 2.93 ± 0.41 mm, while the wrought condition had an MCD of 2.01 ± 0.12 mm, and the LPBF condition reached 3.01 ± 0.33 mm at 5 % strain, without a clearly defined saturation strain. Although wrought materials demonstrated greater resistance to solidification cracking, solidification simulations did not correlate with the experimental testing, as they do not account for microstructural and mechanical factors, relying solely on chemistry. 
    more » « less