skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: Temperature Dependence of the Mechanical Dissipation of Gallium Bonds for Use in Gravitational Wave Detectors
The mirror suspensions in gravitational wave detectors demand low mechanical loss jointing to ensure good enough detector performance and to enable the detection of gravitational waves. Hydroxide catalysis bonds have been used in the fused silica suspensions of the GEO600, Advanced LIGO, and Advanced Virgo detectors. Future detectors may use cryogenic cooling of the mirror suspensions and this leads to a potential change of mirror material and suspension design. Other bonding techniques that could replace or be used alongside hydroxide catalysis bonding are of interest. A design that incorporates repair scenarios is highly desirable. Indeed, the mirror suspensions in KAGRA, which is made from sapphire and operated at cryogenic temperatures, have used a combination of hydroxide catalysis bonding and gallium bonding. This Letter presents the first measurements of the mechanical loss of a gallium bond measured between 10 K and 295 K. It is shown that the loss, which decreases with temperature down to the level of ( 1.8 ± 0.3 ) × 10 4 at 10 K, is comparable to that of a hydroxide catalysis bond. Published by the American Physical Society2024  more » « less
Award ID(s):
2011571 2011706 2309086
PAR ID:
10569112
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Letters
Volume:
132
Issue:
23
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The J / ψ μ + μ μ + μ decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb 1 . Normalizing to the J / ψ μ + μ decay mode leads to a branching fraction of [ 10.1 2.7 + 3.3 ( stat ) ± 0.4 ( syst ) ] × 10 7 , a value that is consistent with the standard model prediction. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less
  2. We measure the branching fraction of the decay B D 0 ρ ( 770 ) using data collected with the Belle II detector. The data contain 387 million B B ¯ pairs produced in e + e collisions at the ϒ ( 4 S ) resonance. We reconstruct 8360 ± 180 decays from an analysis of the distributions of the B energy and the ρ ( 770 ) helicity angle. We determine the branching fraction to be ( 0.939 ± 0.021 ( stat ) ± 0.050 ( syst ) ) % , in agreement with previous results. Our measurement improves the relative precision of the world average by more than a factor of two. Published by the American Physical Society2024 
    more » « less
  3. We report a measurement of decay-time-dependent charge-parity ( C P ) asymmetries in B 0 K S 0 K S 0 K S 0 decays. We use 387 × 10 6 B B ¯ pairs collected at the ϒ ( 4 S ) resonance with the Belle II detector at the SuperKEKB asymmetric-energy electron-positron collider. We reconstruct 220 signal events and extract the C P -violating parameters S and C from a fit to the distribution of the decay-time difference between the two B mesons. The resulting confidence region is consistent with previous measurements in B 0 K S 0 K S 0 K S 0 and B 0 ( c c ¯ ) K 0 decays and with predictions based on the standard model. Published by the American Physical Society2024 
    more » « less
  4. K + K pairs may be produced in photonuclear collisions, either from the decays of photoproduced ϕ ( 1020 ) mesons or directly as nonresonant K + K pairs. Measurements of K + K photoproduction probe the couplings between the ϕ ( 1020 ) and charged kaons with photons and nuclear targets. The kaon-proton scattering occurs at energies far above those available elsewhere. We present the first measurement of coherent photoproduction of K + K pairs on lead ions in ultraperipheral collisions using the ALICE detector, including the first investigation of direct K + K production. There is significant K + K production at low transverse momentum, consistent with coherent photoproduction on lead targets. In the mass range 1.1 < M K K < 1.4 GeV / c 2 above the ϕ ( 1020 ) resonance, for rapidity | y K K | < 0.8 and p T , K K < 0.1 GeV / c , the measured coherent photoproduction cross section is d σ / d y = 3.37 ± 0.61 ( stat ) ± 0.15 ( syst ) mb . The center-of-mass energy per nucleon of the photon-nucleus (Pb) system W γ Pb , n ranges from 33 to 188 GeV, far higher than previous measurements on heavy-nucleus targets. The cross section is larger than expected for ϕ ( 1020 ) photoproduction alone. The mass spectrum is fit to a cocktail consisting of ϕ ( 1020 ) decays, direct K + K photoproduction, and interference between the two. The confidence regions for the amplitude and relative phase angle for direct K + K photoproduction are presented. © 2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
  5. Stellar evolution predicts the existence of a mass gap for black hole remnants produced by pair-instability supernova dynamics, whose lower and upper edges are very uncertain. We study the possibility of constraining the location of the upper end of the pair-instability mass gap, which is believed to appear around m min 130 M , using gravitational wave observations of compact binary mergers with next-generation ground-based detectors. While high metallicity may not allow for the formation of first-generation black holes on the “far side” beyond the gap, metal-poor environments containing population III stars could lead to such heavy black hole mergers. We show that, even in the presence of contamination from other merger channels, next-generation detectors will measure the location of the upper end of the mass gap with a relative precision close to Δ m min / m min 4 % ( N det / 100 ) 1 / 2 at 90% CL, where N det is the number of detected mergers with both members beyond the gap. These future observations could reduce current uncertainties in nuclear and astrophysical processes controlling the location of the gap. Published by the American Physical Society2024 
    more » « less