Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Due to its excellent optical properties, such as low absorption and scattering, amorphous is commonly used as an optical coating material, often in combination with layers to produce a highly reflective stack. However, the high mechanical loss of limits the thermal-noise performance of such coatings when used in precision measurement applications. Doping with has previously been shown to slightly reduce the mechanical loss, but it is still very high compared to many other materials, particularly at low temperatures. In this paper, we present a detailed study of different heat treatment temperatures and of Ti concentrations of up to nominally 75%. We show a significant mechanical-loss reduction for the mixture with the highest Ti cation content, which crystallized after heat treatment at 500°C. The resulting loss is much lower than that of pure or that of after crystallization, making further studies highly interesting, in particular investigations of scattering which may pose a major drawback for optical applications.more » « lessFree, publicly-accessible full text available February 1, 2026
-
The mirror suspensions in gravitational wave detectors demand low mechanical loss jointing to ensure good enough detector performance and to enable the detection of gravitational waves. Hydroxide catalysis bonds have been used in the fused silica suspensions of the GEO600, Advanced LIGO, and Advanced Virgo detectors. Future detectors may use cryogenic cooling of the mirror suspensions and this leads to a potential change of mirror material and suspension design. Other bonding techniques that could replace or be used alongside hydroxide catalysis bonding are of interest. A design that incorporates repair scenarios is highly desirable. Indeed, the mirror suspensions in KAGRA, which is made from sapphire and operated at cryogenic temperatures, have used a combination of hydroxide catalysis bonding and gallium bonding. This Letter presents the first measurements of the mechanical loss of a gallium bond measured between 10 K and 295 K. It is shown that the loss, which decreases with temperature down to the level of at 10 K, is comparable to that of a hydroxide catalysis bond. Published by the American Physical Society2024more » « less
-
Brownian thermal noise as a result of mechanical loss in optical coatings will become the dominant source of noise at the most sensitive frequencies of ground-based gravitational-wave detectors. Experiments found, however, that a candidate material, amorphous Ta2O5, is unable to form an ultrastable glass and, consequently, to yield a film with significantly reduced mechanical loss through elevated-temperature deposition alone. X-ray scattering PDF measurements are carried out on films deposited and subsequently annealed at various temperatures. Inverse atomic modeling is used to analyze the short and medium range features in the atomic structure of these films. Furthermore, in silico deposition simulations of Ta2O5 are carried out at various substrate temperatures and an atomic level analysis of the growth at high temperatures is presented. It is observed that upon elevated-temperature deposition, short range features remain identical, whereas medium range order increases. After annealing, however, both the short and medium range orders of films deposited at different substrate temperatures are nearly identical. A discussion on the surface diffusion and glass transition temperatures indicates that future pursuits of ultrastable low-mechanical-loss films through elevated temperature deposition should focus on materials with a high surface mobility, and/or lower glass transition temperatures in the range of achievable deposition temperatueres.more » « less
-
The sensitivity of gravitational-wave detectors is limited by the mechanical loss associated with the amorphous coatings of the detectors’ mirrors. Amorphous silicon has higher refraction index and lower mechanical loss than current high-index coatings, but its optical absorption at the wavelength used for the detectors is at present large. The addition of hydrogen to the amorphous silicon network reduces both optical absorption and mechanical loss for films prepared under a range of conditions at all measured wavelengths and temperatures, with a particularly large effect on films grown at room temperature. The uptake of hydrogen is greatest in the films grown at room temperature, but still below 1.5 at.% H, which show an ultralow optical absorption (below 10 ppm) measured at 2000 nm for 500-nm-thick films. These results show that hydrogenation is a promising strategy to reduce both optical absorption and mechanical loss in amorphous silicon, and may enable fabrication of mirror coatings for gravitational-wave detectors with improved sensitivity.more » « less
An official website of the United States government
