Given a linear dynamical system, we consider the problem of selecting (at design-time) an optimal set of sensors (subject to certain budget constraints) to minimize the trace of the steady state error covariance matrix of the Kalman filter. Previous work has shown that this problem is NP-hard for certain classes of systems and sensor costs; in this paper, we show that the problem remains NP-hard even for the special case where the system is stable and all sensor costs are identical. Furthermore, we show the stronger result that there is no constant-factor (polynomial-time) approximation algorithm for this problem. This contrasts with other classes of sensor selection problems studied in the literature, which typically pursue constant-factor approximations by leveraging greedy algorithms and submodularity of the cost function. Here, we provide a specific example showing that greedy algorithms can perform arbitrarily poorly for the problem of design-time sensor selection for Kalman filtering.
more »
« less
This content will become publicly available on December 17, 2025
Non-Myopic Sensor Scheduling for Linear Systems with Colored Noise
This paper addresses the task of sensor selection over a finite time horizon for systems modeled via discrete-time, linear state-space representations. Our method for this general linear setting accommodates both spatial and temporal noise correlations. To our best knowledge, this is the first work to do so. Scheduling policies are designed to limit sensor usage and minimize a minimum-mean-square-error-based criterion with time-varying weights to accommodate different user scenarios (e.g., prioritizing certain state elements at certain times or performing linear quadratic Gaussian control). The approach is also nonmyopic since the effects of sensor activations on all time steps are incorporated. A new but algebraically equivalent formulation of the scheduling model is introduced that readily accounts for colored noise sequences. This lends a closed-form expression for the error covariance that is explicit in all scheduling variables. Such an expression had been considered intractable for filtering in both white and colored noise regimes. This expression is leveraged to develop a well-motivated surrogate objective function that is shown to be submodular, thus enabling the use of an efficient greedy algorithm accompanied by performance guarantees with respect to the surrogate objective. Numerical examples are provided to demonstrate the effectiveness of the proposed methodology.
more »
« less
- Award ID(s):
- 1944318
- PAR ID:
- 10569309
- Publisher / Repository:
- AIAA
- Date Published:
- Journal Name:
- Journal of Guidance, Control, and Dynamics
- ISSN:
- 0731-5090
- Page Range / eLocation ID:
- 1 to 15
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Given a linear dynamical system affected by noise, we consider the problem of optimally placing sensors (at design-time) subject to certain budget constraints to minimize the trace of the steady-state error covariance of the Kalman filter. Previous work has shown that this problem is NP-hard in general. In this paper, we impose additional structure by considering systems whose dynamics are given by a stochastic matrix corresponding to an underlying consensus network. In the case when there is a single input at one of the nodes in a tree network, we provide an optimal strategy (computed in polynomial-time) to place the sensors over the network. However, we show that when the network has multiple inputs, the optimal sensor placement problem becomes NP-hard.more » « less
-
Motivated by engineering applications such as resource allocation in networks and inventory systems, we consider average-reward Reinforcement Learning with unbounded state space and reward function. Recent work Murthy et al. (2024) studied this problem in the actor-critic framework and established finite sample bounds assuming access to a critic with certain error guarantees. We complement their work by studying Temporal Difference (TD) learning with linear function approximation and establishing finite-time bounds with the optimal sample complexity. These results are obtained using the following general-purpose theorem for non-linear Stochastic Approximation (SA). Suppose that one constructs a Lyapunov function for a non-linear SA with certain drift condition. Then, our theorem establishes finite-time bounds when this SA is driven by unbounded Markovian noise under suitable conditions. It serves as a black box tool to generalize sample guarantees on SA from i.i.d. or martingale difference case to potentially unbounded Markovian noise. The generality and the mild assumptions of the setup enables broad applicability of our theorem. We illustrate its power by studying two more systems: (i) We improve upon the finite-time bounds of Q-learning in Chen et al. (2024) by tightening the error bounds and also allowing for a larger class of behavior policies. (ii) We establish the first ever finite-time bounds for distributed stochastic optimization of high-dimensional smooth strongly convex function using cyclic block coordinate descent.more » « less
-
In this paper, we study a sampling and transmission scheduling problem for multi-source remote estimation, where a scheduler determines when to take samples from multiple continuous-time Gauss-Markov processes and send the samples over multiple channels to remote estimators. The sample transmission times are i.i.d. across samples and channels. The objective of the scheduler is to minimize the weighted sum of the time-average expected estimation errors of these Gauss-Markov sources. This problem is a continuous-time Restless Multi-armed Bandit (RMAB) problem with a continuous state space. We prove that the bandits are indexable and derive an exact expression of the Whittle index. To the extent of our knowledge, this is the first Whittle index policy for multi-source signal-aware remote estimation of Gauss-Markov processes. We further investigate signal-agnostic remote estimation and develop a Whittle index policy for multi-source Age of Information (AoI) minimization over parallel channels with i.i.d. random transmission times. Our results unite two theoretical frameworks for remote estimation and AoI minimization: threshold-based sampling and Whittle index-based scheduling. In the single-source, single-channel scenario, we demonstrate that the optimal solution to the sampling and scheduling problem can be equivalently expressed as both a threshold-based sampling strategy and a Whittle index-based scheduling policy. Notably, the Whittle index is equal to zero if and only if two conditions are satisfied: (i) the channel is idle, and (ii) the estimation error is precisely equal to the threshold in the threshold-based sampling strategy. Moreover, the methodology employed to derive threshold-based sampling strategies in the single-source, single-channel scenario plays a crucial role in establishing indexability and evaluating the Whittle index in the more intricate multi-source, multi-channel scenario. Our numerical results show that the proposed policy achieves high performance gain over the existing policies when some of the Gauss-Markov processes are highly unstable.more » « less
-
The open sourcing of large amounts of image data promotes the development of deep learning techniques. Along with this comes the privacy risk of these image datasets being exploited by unauthorized third parties to train deep learning models for commercial or illegal purposes. To avoid the abuse of data, a poisoning-based technique, unlearnable example, has been proposed to significantly degrade the generalization performance of models by adding imperceptible noise to the data. To further enhance its robustness against adversarial training, existing works leverage iterative adversarial training on both the defensive noise and the surrogate model. However, it still remains unknown whether the robustness of unlearnable examples primarily comes from the effect of enhancement in the surrogate model or the defensive noise. Observing that simply removing the adversarial perturbation on the training process of the defensive noise can improve the performance of robust unlearnable examples, we identify that solely the surrogate model's robustness contributes to the performance. Furthermore, we found a negative correlation exists between the robustness of defensive noise and the protection performance, indicating defensive noise's instability issue. Motivated by this, to further boost the robust unlearnable example, we introduce Stable Error-Minimizing noise (SEM), which trains the defensive noise against random perturbation instead of the time-consuming adversarial perturbation to improve the stability of defensive noise. Through comprehensive experiments, we demonstrate that SEM achieves a new state-of-the-art performance on CIFAR-10, CIFAR-100, and ImageNet Subset regarding both effectiveness and efficiency.more » « less
An official website of the United States government
