Abstract MXenes exhibit remarkable properties, including high electrical conductivity, tunable surface chemistry, outstanding mechanical strength, and notable hydrophilicity. Recent advancements in bio‐functionalization have further enhanced these intrinsic characteristics, unlocking unprecedented opportunities for MXenes across a wide spectrum of applications in both biomedical and environmental domains. This review provides an in‐depth analysis of the synthesis strategies and functionalization techniques that improve MXenes' biocompatibility and expand their potential uses in cutting‐edge applications, including implantable and wearable devices, drug delivery systems, cancer therapies, tissue engineering, and advanced sensing technologies. Moreover, the review explores the utility of bio‐functionalized MXenes in areas such as corrosion protection, water purification, and food safety sensors, underscoring their versatility in addressing urgent global challenges. By conducting a critical evaluation of current research, this review not only highlights the immense potential of bio‐functionalized MXenes but also identifies pivotal gaps in the literature, offering clear pathways for future exploration and innovation in this rapidly evolving field. 
                        more » 
                        « less   
                    This content will become publicly available on February 5, 2026
                            
                            Engineered Living Systems Based on Gelatin: Design, Manufacturing, and Applications
                        
                    
    
            Abstract Engineered living systems (ELSs) represent purpose‐driven assemblies of living components, encompassing cells, biomaterials, and active agents, intricately designed to fulfill diverse biomedical applications. Gelatin and its derivatives have been used extensively in ELSs owing to their mature translational pathways, favorable biological properties, and adjustable physicochemical characteristics. This review explores the intersection of gelatin and its derivatives with fabrication techniques, offering a comprehensive examination of their synergistic potential in creating ELSs for various applications in biomedicine. It offers a deep dive into gelatin, including its structures and production, sources, processing, and properties. Additionally, the review explores various fabrication techniques employing gelatin and its derivatives, including generic fabrication techniques, microfluidics, and various 3D printing methods. Furthermore, it discusses the applications of ELSs based on gelatin in regenerative engineering as well as in cell therapies, bioadhesives, biorobots, and biosensors. Future directions and challenges in gelatin fabrication are also examined, highlighting emerging trends and potential areas for improvements and innovations. In summary, this comprehensive review underscores the significance of gelatin‐based ELSs in advancing biomedical engineering and lays the groundwork for guiding future research and developments within the field. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2225698
- PAR ID:
- 10571428
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 37
- Issue:
- 22
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Development of terahertz (THz) sources, detectors, and optical components has been an active area of research across the globe. The interest in THz optoelectronics is driven by the various applications they have enabled, such as ultrawide‐band communication systems, air‐ and space‐borne astronomy, atmospheric monitoring, small‐scale radar, airport security scanners, ultrafast nanodevices, and biomedical imaging and sensing. Here, the aim is to provide a comprehensive review of THz bandpass metamaterials focusing on several areas. First, the design fundamentals and geometrical patterns of THz bandpass metamaterials are summarized. Second, fabrication methods of THz bandpass metamaterials are reviewed, including typical micro‐ and nanofabrication techniques and laser micromachining techniques. More importantly, different engineering methods are reviewed for tuning and modulation of the THz transmission resonance for these metamaterials. Both passive and active modulation methods are included in this discussion; the passive method involves changes in the geometrical pattern of the filter material, and the active method performs in situ modulation of properties by applying an external physical field. Finally, the potential applications and prospects for future research of THz bandpass metamaterials are discussed.more » « less
- 
            Abstract The rapid advancement in personalized healthcare has driven the development of wearable biomedical devices for real-time biomarker monitoring and diagnosis. Traditional invasive blood-based diagnostics are painful and limited to sporadic health snapshots. To address these limitations, microneedle-based sensing platforms have emerged, utilizing interstitial fluid (ISF) as an alternative biofluid for continuous health monitoring in a minimally invasive and painless manner. This review aims to provide a comprehensive overview of microneedle sensor technology, covering microneedle design, fabrication methods, and sensing strategy. Additionally, it explores the integration of monitoring electronics for continuous on-body monitoring. Representative applications of microneedle sensing platforms for both monitoring and therapeutic purposes are introduced, highlighting their potential to revolutionize personalized healthcare. Finally, the review discusses the remaining challenges and future prospects of microneedle technology. Graphical Abstractmore » « less
- 
            Abstract Hybrid nanomaterials have found use in many biomedical applications. This article provides a comprehensive review of the principles, techniques, and recent advancements in the design and fabrication of hybrid nanomaterials for biomedicine. We begin with an introduction to the general concept of material hybridization, followed by a discussion of how this approach leads to materials with additional functionality and enhanced performance. We then highlight hybrid nanomaterials in the forms of nanostructures, nanocomposites, metal–organic frameworks, and biohybrids, including their fabrication methods. We also showcase the use of hybrid nanomaterials to advance biomedical engineering in the context of nanomedicine, regenerative medicine, diagnostics, theranostics, and biomanufacturing. Finally, we offer perspectives on challenges and opportunities.more » « less
- 
            The goal of engineering artificial cells is to build a living cell with the least amount of parts and complexity. Artificial cells hold great potential for several applications, including membrane protein interactions, gene expression, biomaterials, and drug development. It is critical to generate robust, stable artificial cells using high throughput, easy-to-control, and flexible techniques. Recently, droplet-based microfluidic techniques have shown great potential for the synthesis of vesicles and artificial cells. Here, we summarized the recent advances in droplet-based microfluidic techniques for the fabrication of vesicles and artificial cells. We first reviewed the different types of droplet-based microfluidic devices, including flow-focusing, T-junction, and coflowing. Next, we discussed the formation of multi-compartmental vesicles and artificial cells based on droplet-based microfluidics. The applications of artificial cells for studying gene expression dynamics, artificial cell-cell communications, and mechanobiology are highlighted and discussed. Finally, the current challenges and future outlook of droplet-based microfluidic methods for engineering artificial cells are discussed. This review will provide insights into scientific research in synthetic biology, microfluidic devices, membrane interactions, and mechanobiology.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
