skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2025

Title: Retrieving Young Cloudy L Dwarfs: A Nearby Planetary-mass Companion BD+60 1417B and its Isolated Red Twin W0047
Abstract We present an atmospheric retrieval analysis on a set of young, cloudy, red L dwarfs—CWISER J124332.12+600126.2 (BD+60 1417B) and WISEP J004701.06+680352.1 (W0047)—using the Brewster retrieval framework. We also present the first elemental abundance measurements of the young K-dwarf (K0) host star, BD+60 1417, using high-resolution (R= 50,000) spectra taken with the Potsdam Echelle Polarimetric and Spectroscopic Instrument on the Large Binocular Telescope. In the complex cloudy L-dwarf regime the emergence of condensate cloud species complicates retrieval analysis when only near-infrared data are available. We find that for both L dwarfs in this work, despite testing three different thermal profile parameterizations we are unable to constrain reliable abundance measurements and thus the carbon-to-oxygen ratio. While we cannot conclude what the abundances are, we can conclude that the data strongly favor a cloud model over a cloudless model. We note that the difficulty in retrieval constraints persists regardless of the signal-to-noise ratio of the data examined (S/N ∼ 10 for CWISER BD+60 1417B and 40 for WISEP W0047). The results presented in this work provide valuable lessons about retrieving young, low-surface-gravity cloudy L dwarfs. This work provides continued evidence of missing information in models and the crucial need for JWST to guide and inform retrieval analysis in this regime.  more » « less
Award ID(s):
1909776 2143400 2219090
PAR ID:
10571553
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
972
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
172
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT At the lowest masses, the distinction between brown dwarfs and giant exoplanets is often blurred and literature classifications rarely reflect the deuterium burning boundary. Atmospheric characterization may reveal the extent to which planetary formation pathways contribute to the population of very low mass brown dwarfs, by revealing whether their abundance distributions differ from those of the local field population or, in the case of companions, their primary stars. The T8 dwarf Ross 458c is a possible planetary-mass companion to a pair of M dwarfs, and previous work suggests that it is cloudy. We here present the results of the retrieval analysis of Ross 458c, using archival spectroscopic data in the 1.0–2.4 µm range. We test a cloud-free model as well as a variety of cloudy models and find that the atmosphere of Ross 458c is best described by a cloudy model (strongly preferred). The CH4/H2O is higher than expected at $$1.97^{+0.13}_{-0.14}$$. This value is challenging to understand in terms of equilibrium chemistry and plausible carbon-to-oxygen (C/O) ratios. Comparisons to thermochemical grid models suggest a C/O of ≈1.35, if CH4 and H2O are quenched at 2000 K, requiring vigorous mixing. We find a [C/H] ratio of +0.18, which matches the metallicity of the primary system, suggesting that oxygen is missing from the atmosphere. Even with extreme mixing, the implied C/O is well beyond the typical stellar regime, suggesting either a non-stellar formation pathway or the sequestration of substantial quantities of oxygen via hitherto unmodelled chemistry or condensation processes. 
    more » « less
  2. Abstract Brown dwarf spectra offer vital testbeds for our understanding of the chemical and physical processes that sculpt substellar atmospheres. Recently, atmospheric retrieval approaches have been successfully applied to low-resolution (R∼ 100) spectra of L, T, and Y dwarfs, yielding constraints on the chemical abundances and temperature structures of these atmospheres. Medium-resolution (R∼ 103) spectra of brown dwarfs offer additional insight, as molecular features are more easily disentangled and the thermal structure of the upper atmosphere is better probed. We present results from a GPU-based retrieval analysis of a high signal-to-noise, medium-resolution (R∼ 6000) FIRE spectrum from 0.85 to 2.5μm of the T9 dwarf UGPS J072227.51–054031.2. At 60× higher spectral resolution than previous brown dwarf retrievals, a number of novel challenges arise. We examine the effect of different opacity sources, in particular for CH4. Furthermore, we find that flaws in the data like errors from order stitching can bias our constraints. We compare these retrieval results to those for anR∼ 100 spectrum of the same object, revealing how constraints on atmospheric abundances and temperatures improve by an order of magnitude or more with increased spectral resolution. In particular, we can constrain the abundance of H2S, which is undetectable at lower spectral resolution. While these medium-resolution retrievals offer the potential of precise, stellar-like constraints on atmospheric abundances (∼0.02 dex), our retrieved radius is unphysically small ( R = 0.50 0.01 + 0.01 RJup), indicating shortcomings with our modeling framework. This work is an initial investigation into brown dwarf retrievals at medium spectral resolution, offering guidance for future ground-based studies and JWST observations. 
    more » « less
  3. Abstract Through the Backyard Worlds: Planet 9 citizen science project we discovered a late-type L dwarf co-moving with the young K0 star BD+60 1417 at a projected separation of 37″ or 1662 au. The secondary—CWISER J124332.12+600126.2 (W1243)—is detected in both the CatWISE2020 and 2MASS reject tables. The photometric distance and CatWISE proper motion both match that of the primary within ∼1 σ and our estimates for a chance alignment yield a zero probability. Follow-up near-infrared spectroscopy reveals W1243 to be a very red 2MASS ( J – K s = 2.72), low surface gravity source that we classify as L6–L8 γ . Its spectral morphology strongly resembles that of confirmed late-type L dwarfs in 10–150 Myr moving groups as well as that of planetary mass companions. The position on near- and mid-infrared color–magnitude diagrams indicates the source is redder and fainter than the field sequence, a telltale sign of an object with thick clouds and a complex atmosphere. For the primary we obtained new optical spectroscopy and analyzed all available literature information for youth indicators. We conclude that the Li i abundance, its loci on color–magnitude and color–color diagrams, and the rotation rate revealed in multiple TESS sectors are all consistent with an age of 50–150 Myr. Using our re-evaluated age of the primary and the Gaia parallax, along with the photometry and spectrum for W1243, we find T eff = 1303 ± 31 K, log g = 4.3 ± 0.17 cm s −2 , and a mass of 15 ± 5 M Jup . We find a physical separation of ∼1662 au and a mass ratio of ∼0.01 for this system. Placing it in the context of the diverse collection of binary stars, brown dwarfs, and planetary companions, the BD+60 1417 system falls in a sparsely sampled area where the formation pathway is difficult to assess. 
    more » « less
  4. Abstract We present results from an atmospheric retrieval analysis of Gl 229B using the Brewster retrieval code. We find the best fit model to be cloud-free, consistent with the T dwarf retrieval work of Line et al.; Zalesky et al. and Gonzales et al. Fundamental parameters (mass, radius, log(LBol/LSun), log(g)) determined from our model agree within 1σto SED-derived values, except forTeffwhere our retrievedTeffis approximately 100 K cooler than the evolutionary model-based SED value. We find a retrieved mass of 50 9 + 12 MJup, however, we also find that the observables of Gl 229B can be explained by a cloud-free model with a prior on mass at the dynamical value, 70MJup. We are able to constrain abundances for H2O, CO, CH4, NH3, Na and K and find a supersolar C/O ratio as compared to its primary, Gl 229A. We report an overall subsolar metallicity due to atmospheric oxygen depletion, but find a solar [C/H], which matches that of the primary. We find that this work contributes to a growing trend in retrieval-based studies, particularly for brown dwarfs, toward supersolar C/O ratios and discuss the implications of this result on formation mechanisms and internal physical processes, as well as model biases. 
    more » « less
  5. Abstract Comparisons of atmospheric retrievals can reveal powerful insights on the strengths and limitations of our data and modeling tools. In this paper, we examine a sample of five L dwarfs of similar effective temperature (Teff) or spectral type to compare their pressure–temperature (P-T) profiles. Additionally, we explore the impact of an object’s metallicity and the signal-to-noise ratio (S/N) of the observations on the parameters we can retrieve. We present the first atmospheric retrievals: 2MASS J15261405+2043414, 2MASS J05395200−0059019, 2MASS J15394189−0520428, and GD 165B increasing the small but growing number of L dwarfs retrieved. When compared to the atmospheric retrievals of SDSS J141624.08+134826.7, a low-metallicity d/sdL7 primary in a wide L+T binary, we find that similarTeffsources have similar P-T profiles with metallicity differences impacting the relative offset between their P-T profiles in the photosphere. We also find that for near-infrared spectra, when the S/N is ≳80 we are in a regime where model uncertainties dominate over data measurement uncertainties. As such, S/N does not play a role in the retrieval’s ability to distinguish between a cloud-free and cloudless model, but may impact the confidence of the retrieved parameters. Lastly, we also discuss how to break cloud model degeneracies and the impact of extraneous gases in a retrieval model. 
    more » « less