skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Warm-adapted encroachment outpaces cool-adapted retreat in a hotspot of trailing-edge population diversity in the southern Appalachian Mountains, USA
ABSTRACT Many populations near receding low-latitude range: margins are declining in response to climate change, but most studies of trailing-edge populations have focused on single species. Using 10 years (2014–2023) of avian survey data from a high-elevation trailing-edge population hotspot in the Appalachian Mountains, USA, we tested the hypothesis that high-elevation communities would experience turnover through thermophilization, as warm-adapted species near the center of their geographic ranges expand into regions formerly dominated by peripheral populations of cool-adapted species. Three of the nine cool-adapted, peripheral populations decreased in abundance, and whereas 6 species exhibited little change. For warm-adapted populations near the core of their range, 1 of 16 decreased in abundance, 11 increased, and 4 exhibited no change. Within the most abundant species in this community, our results indicate that warm-adapted species are expanding their ranges faster than the rate at which ranges of cool-adapted species are contracting. Avoiding future community turnover may require conservation strategies that maintain microclimates for cool-adapted species facing novel abiotic and biotic conditions at high elevations.  more » « less
Award ID(s):
1652223 2319642
PAR ID:
10571818
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Ornithological Applications
Volume:
127
Issue:
1
ISSN:
0010-5422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding the demographic drivers of range contractions is important for predicting species' responses to climate change; however, few studies have examined the effects of climate change on survival and recruitment across species' ranges. We show that climate change can drive trailing edge range contractions through the effects on apparent survival, and potentially recruitment, in a migratory songbird. We assessed the demographic drivers of trailing edge range contractions using a long‐term demography dataset for the black‐throated blue warbler (Setophaga caerulescens) collected across elevational climate gradients at the trailing edge and core of the breeding range. We used a Bayesian hierarchical model to estimate the effect of climate change on apparent survival and recruitment and to forecast population viability at study plots through 2040. The trailing edge population at the low‐elevation plot became locally extinct by 2017. The local population at the mid‐elevation plot at the trailing edge gradually declined and is predicted to become extirpated by 2040. Population declines were associated with warming temperatures at the mid‐elevation plot, although results were more equivocal at the low‐elevation plot where we had fewer years of data. Population density was stable or increasing at the range core, although warming temperatures are predicted to cause population declines by 2040 at the low‐elevation plot. This result suggests that even populations within the geographic core of the range are vulnerable to climate change. The demographic drivers of local population declines varied between study plots, but warming temperatures were frequently associated with declining rates of population growth and apparent survival. Declining apparent survival in our study system is likely to be associated with increased adult emigration away from poor‐quality habitats. Our results suggest that demographic responses to warming temperatures are complex and dependent on local conditions and geographic range position, but spatial variation in population declines is consistent with the climate‐mediated range shift hypothesis. Local populations of black‐throated blue warblers near the warm‐edge range boundary at low latitudes and low elevations are likely to be the most vulnerable to climate change, potentially leading to local extirpation and range contractions. 
    more » « less
  2. Abstract As climatic variation re‐shapes global biodiversity, understanding eco‐evolutionary feedbacks during species range shifts is of increasing importance. Theory on range expansions distinguishes between two different forms: “pulled” and “pushed” waves. Pulled waves occur when the source of the expansion comes from low‐density peripheral populations, while pushed waves occur when recruitment to the expanding edge is supplied by high‐density populations closer to the species' core. How extreme events shape pushed/pulled wave expansion events, as well as trailing‐edge declines/contractions, remains largely unexplored. We examined eco‐evolutionary responses of a marine invertebrate (the owl limpet,Lottia gigantea) that increased in abundance during the 2014–2016 marine heatwaves near the poleward edge of its geographic range in the northeastern Pacific. We used whole‐genome sequencing from 19 populations across >11 degrees of latitude to characterize genomic variation, gene flow, and demographic histories across the species' range. We estimated present‐day dispersal potential and past climatic stability to identify how contemporary and historical seascape features shape genomic characteristics. Consistent with expectations of a pushed wave, we found little genomic differentiation between core and leading‐edge populations, and higher genomic diversity at range edges. A large and well‐mixed population in the northern edge of the species' range is likely a result of ocean current anomalies increasing larval settlement and high‐dispersal potential across biogeographic boundaries. Trailing‐edge populations have higher differentiation from core populations, possibly driven by local selection and limited gene flow, as well as high genomic diversity likely as a result of climatic stability during the Last Glacial Maximum. Our findings suggest that extreme events can drive poleward range expansions that carry the adaptive potential of core populations, while also cautioning that trailing‐edge extirpations may threaten unique evolutionary variation. This work highlights the importance of understanding how both trailing and leading edges respond to global change and extreme events. 
    more » « less
  3. Abstract Many predictions of how climate change will impact biodiversity have focused on range shifts using species‐wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life‐history plasticity vs. local adaptation to species‐wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species’ range—not only those at the trailing range edge—could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species’ latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade‐off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species’ ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest potential impacts of climate change on species’ abundance and distribution. 
    more » « less
  4. Marine species worldwide are responding to ocean warming by shifting their ranges to new latitudes and, for intertidal species, elevations. Demographic traits can vary across populations spanning latitudinal and elevational ranges, with impacts on population growth. Understanding how demography varies across gradients from range center to edge could help us predict future shifts, species assemblages, and extinction risks. We investigated demographic traits for 2 range-expanding whelk species:Acanthinucella spirataandMexacanthina lugubris.We measured reproductive output across environmental (latitudinal and shore elevation) gradients along the coast of California, USA. We also conducted intensive measurements of offspring condition (survival and thermal tolerance) across shore elevation forM. lugubrisat one site. We found no difference in reproductive output, body size, or larval survival across shore heights forM. lugubris,suggesting that egg-laying behavior buffers developing stages from the relatively high level of thermal variation experienced due to daily tidal emersion. However, across latitudes, reproductive output increased toward the leading range edge forA. spirata, and body size increased for both species. Increased vital rates at the leading range edge could increase whelk population growth and expansion, allowing species to persist under climate change even if contractions occur at trailing edges. 
    more » « less
  5. Abstract PurposeTrailing-edge populations at the low-latitude, receding edge of a shifting range face high extinction risk from climate change unless they are able to track optimal environmental conditions through dispersal. MethodsWe fit dispersal models to the locations of 3165 individually-marked black-throated blue warblers (Setophaga caerulescens) in the southern Appalachian Mountains in North Carolina, USA from 2002 to 2023. Black-throated blue warbler breeding abundance in this population has remained relatively stable at colder and wetter areas at higher elevations but has declined at warmer and drier areas at lower elevations. ResultsMedian dispersal distance of young warblers was 917 m (range 23–3200 m), and dispersal tended to be directed away from warm and dry locations. In contrast, adults exhibited strong site fidelity between breeding seasons and rarely dispersed more than 100 m (range 10–1300 m). Consequently, adult dispersal kernels were much more compact and symmetric than natal dispersal kernels, suggesting adult dispersal is unlikely a driving force of declines in this population. ConclusionOur findings suggest that directional natal dispersal may mitigate fitness costs for trailing-edge populations by allowing individuals to track changing climate and avoid warming conditions at warm-edge range boundaries. 
    more » « less