The evolution of symbiotic interactions may be affected by unpredictable conditions. However, a link between prevalence of these conditions and symbiosis has not been widely demonstrated. We test for these associations usingDictyostelium discoideumsocial amoebae and their bacterial endosymbionts.D. discoideumcommonly hosts endosymbiotic bacteria from three taxa:Paraburkholderia, Amoebophilusand Chlamydiae. Three species of facultativeParaburkholderiaendosymbionts are the best studied and give hosts the ability to carry prey bacteria through the dispersal stage to new environments.Amoebophilusand Chlamydiae are obligate endosymbiont lineages with no measurable impact on host fitness. We tested whether the frequency of both single infections and coinfections of these symbionts were associated with the unpredictability of their soil environments by using symbiont presence-absence data fromD. discoideumisolates from 21 locations across the eastern United States. We found that symbiosis across all infection types, symbiosis withAmoebophilusand Chlamydiae obligate endosymbionts, and symbiosis involving coinfections were not associated with any of our measures. However, unpredictable precipitation was associated with symbiosis in two species ofParaburkholderia, suggesting a link between unpredictable conditions and symbiosis.
more »
« less
This content will become publicly available on November 1, 2025
Novel symbionts reveal amoebae as significant hosts for environmental chlamydiae
Chlamydiae represent a diverse group of obligate intracellular bacteria with elusive hosts in environmental settings. This study used one of the largest collections of wild amoebae (Dictyostelium discoideum and D. giganteum, 106 clones) collected over the past two decades to screen for novel environmental chlamydiae. We found that novel environmental chlamydiae are prevalent in two wild Dictyostelium species and assembled 42 novel chlamydiae metagenome-assembled genomes (MAGs). The MAGs represent three chlamydiae species previously only reported using 16S sequencing. Their genomes are divergent enough from other species to warrant placing them in two new genera (tentatively called Ca. Dictychlamydia sp. LF1, Ca. Dictychlamydia sp. LF2, and Ca. Feichlamydia sp. LF3). In addition, these chlamydiae species show strong host specificity with two Dictyostelium amoeba hosts, except one amoeba sample. Ca. Dictychlamydia sp. LF1 and Ca. Feichlamydia sp. LF3 was exclusively observed in D. discoideum, while Ca. Dictychlamydia sp. LF2 was found only in D. giganteum. Phylogenetic and comparative genomic analyses suggest that all three chlamydiae are close to arthropod-associated chlamydiae and likely have some intermediate characteristics between previously reported amoeba-associated and vertebrate-associated chlamydiae. This study significantly broadens our understanding of the chlamydial host range and underscores the role of amoebae as vital hosts for environmental chlamydiae.
more »
« less
- Award ID(s):
- 2237266
- PAR ID:
- 10572036
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The soil amoeba Dictyostelium discoideum acts as both a predator and potential host for diverse bacteria. We tested fifteen Pseudomonas strains that were isolated from transiently infected wild D. discoideum for ability to escape predation and infect D. discoideum fruiting bodies. Three predation-resistant strains frequently caused extracellular infections of fruiting bodies but were not found within spores. Furthermore, infection by one of these species induces secondary infections and suppresses predation of otherwise edible bacteria. Another strain can persist inside of amoebae after being phagocytosed but is rarely taken up. We sequenced isolate genomes and discovered that predation-resistant isolates are not monophyletic. Many Pseudomonas isolates encode secretion systems and toxins known to improve resistance to phagocytosis in other species, as well as diverse secondary metabolite biosynthetic gene clusters that may contribute to predation resistance. However, the distribution of these genes alone cannot explain why some strains are edible and others are not. Each lineage may employ a unique mechanism for resistance.more » « less
-
Here we give names to three new species of Paraburkholderia that can remain in symbiosis indefinitely in the spores of a soil dwelling eukaryote, Dictyostelium discoideum . The new species P. agricolaris sp. nov. , P. hayleyella sp. nov. , and P. bonniea sp. nov . are widespread across the eastern USA and were isolated as internal symbionts of wild-collected D. discoideum . We describe these sp. nov. using several approaches. Evidence that they are each a distinct new species comes from their phylogenetic position, average nucleotide identity, genome-genome distance, carbon usage, reduced length, cooler optimal growth temperature, metabolic tests, and their previously described ability to invade D. discoideum amoebae and form a symbiotic relationship . All three of these new species facilitate the prolonged carriage of food bacteria by D. discoideum, though they themselves are not food. Further studies of the interactions of these three new species with D. discoideum should be fruitful for understanding the ecology and evolution of symbioses.more » « less
-
The social amoeba Dictyostelium discoideum engages in a complex relationship with bacterial endosymbionts in the genus Paraburkholderia, which can benefit their host by imbuing it with the ability to carry prey bacteria throughout its life cycle. The relationship between D. discoideum and Paraburkholderia has been shown to take place across many strains and a large geographical area, but little is known about Paraburkholderia’s potential interaction with other dictyostelid species. We explore the ability of three Paraburkholderia species to stably infect and induce bacterial carriage in other dictyostelid hosts. We found that all three Paraburkholderia species successfully infected and induced carriage in seven species of Dictyostelium hosts. While the overall behaviour was qualitatively similar to that previously observed in infections of D. discoideum, differences in the outcomes of different host/symbiont combinations suggest a degree of specialization between partners. Paraburkholderia was unable to maintain a stable association with the more distantly related host Polysphondylium violaceum. Our results suggest that the mechanisms and evolutionary history of Paraburkholderia’s symbiotic relationships may be general within Dictyostelium hosts, but not so general that it can associate with hosts of other genera. Our work further develops an emerging model system for the study of symbiosis in microbes.more » « less
-
Abstract The establishment of symbioses between eukaryotic hosts and bacterial symbionts in nature is a dynamic process. The formation of such relationships depends on the life history of both partners. Bacterial symbionts of amoebae may have unique evolutionary trajectories to the symbiont lifestyle, because bacteria are typically ingested as prey. To persist after ingestion, bacteria must first survive phagocytosis. In the social amoebaDictyostelium discoideum, certain strains ofBurkholderiabacteria are able to resist amoebal digestion and maintain a persistent relationship that includes carriage throughout the amoeba's social cycle that culminates in spore formation. SomeBurkholderiastrains allow their host to carry other bacteria, as food. This carried food is released in new environments in a trait called farming. To better understand the diversity and prevalence ofBurkholderiasymbionts and the traits they impart to their amoebae hosts, we first screened 700 natural isolates ofD. discoideumand found 25% infected withBurkholderia. We next used a multilocus phylogenetic analysis and identified two independent transitions byBurkholderiato the symbiotic lifestyle. Finally, we tested the ability of 38 strains ofBurkholderiafromD. discoideum, as well as strains isolated from other sources, for traits relevant to symbiosis inD. discoideum. OnlyD. discoideumnative isolates belonging to theBurkholderia agricolaris,B. hayleyella, andB. bonnieaspecies were able to form persistent symbiotic associations withD. discoideum.TheBurkholderia–Dictyosteliumrelationship provides a promising arena for further studies of the pathway to symbiosis in a unique system.more » « less
An official website of the United States government
