skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An analysis of a 2 × 2 Keyfitz–Kranzer type balance system with varying generalized Chaplygin gas
We consider a system of two balance laws of Keyfitz–Kranzer type with varying generalized Chaplygin gas, which exhibits negative pressure and is a product of a function of time and the inverse of a power of the density. The Chaplygin gas is a fluid designed to accommodate measurements for the early universe and late-time universal expansion while obeying the pressure–density–time relation. We produce an explanation and description of the non-self-similar Riemann solutions, including the non-classical singular solutions. We also find that due to a direct dependence on time, a change in the regions allowing for combinations of classical and non-classical singular solutions occurs; therefore, a Riemann solution can have different solutions over several time intervals. Our findings are confirmed numerically using the Local Lax–Friedrichs scheme.  more » « less
Award ID(s):
2349040
PAR ID:
10572100
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Physics of Fluids
Volume:
36
Issue:
9
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The classical model of an isolated selfgravitating gaseous star is given by the Euler–Poisson system with a polytropic pressure law P(ρ)=ργ, γ>1. For any 1<γ<43, we construct an infinite-dimensional family of collapsing solutions to the Euler–Poisson system whose density is in general space inhomogeneous and undergoes gravitational blowup along a prescribed space-time surface, with continuous mass absorption at the origin. The leading order singular behavior is described by an explicit collapsing solution of the pressureless Euler–Poisson system. 
    more » « less
  2. Abstract Non-equilibrium inductively coupled plasmas (ICPs) operating in hydrogen are of significant interest for applications including large-area materials processing. Increasing control of spatial gas heating, which drives the formation of neutral species density gradients and the rate of gas-temperature-dependent reactions, is critical. In this study, we use 2D fluid-kinetic simulations with the Hybrid Plasma Equipment Model to investigate the spatially resolved production of atomic hydrogen in a low-pressure planar ICP operating in pure hydrogen (10–20 Pa or 0.075–0.15 Torr, 300 W). The reaction set incorporates self-consistent calculation of the spatially resolved gas temperature and 14 vibrationally excited states. We find that the formation of neutral-gas density gradients, which result from spatially non-uniform electrical power deposition at constant pressure, can drive significant variations in the vibrational distribution function and density of atomic hydrogen when gas heating is spatially resolved. This highlights the significance of spatial gas heating on the production of reactive species in relatively high-power-density plasma processing sources. 
    more » « less
  3. Abstract In the KdV context, we revisit the classical Darboux transformation in the framework of the vector Riemann–Hilbert problem. This readily yields a version of the binary Darboux transformation providing a short‐cut to explicit formulas for solitons traveling on a wide range of background solutions. Our approach also links the binary Darboux transformation and the double commutation method. 
    more » « less
  4. Abstract This paper concerns the existence of global weak solutionsá la Lerayfor compressible Navier–Stokes–Fourier systems with periodic boundary conditions and the truncated virial pressure law which is assumed to be thermodynamically unstable. More precisely, the main novelty is that the pressure law is not assumed to be monotone with respect to the density. This provides the first global weak solutions result for the compressible Navier-Stokes-Fourier system with such kind of pressure law which is strongly used as a generalization of the perfect gas law. The paper is based on a new construction of approximate solutions through an iterative scheme and fixed point procedure which could be very helpful to design efficient numerical schemes. Note that our method involves the recent paper by the authors published in Nonlinearity (2021) for the compactness of the density when the temperature is given. 
    more » « less
  5. null (Ed.)
    ABSTRACT We explore the survival of cool clouds in multiphase circumgalactic media. We revisit the ‘cloud-crushing problem’ in a large survey of simulations including radiative cooling, self-shielding, self-gravity, magnetic fields, and anisotropic Braginskii conduction and viscosity (with saturation). We explore a wide range of parameters including cloud size, velocity, ambient temperature and density, and a variety of magnetic field configurations and cloud turbulence. We find that realistic magnetic fields and turbulence have weaker effects on cloud survival; the most important physics is radiative cooling and conduction. Self-gravity and self-shielding are important for clouds that are initially Jeans-unstable, but largely irrelevant otherwise. Non-self-gravitating, realistically magnetized clouds separate into four regimes: (1) at low column densities, clouds evaporate rapidly via conduction; (2) a ‘failed pressure confinement’ regime, where the ambient hot gas cools too rapidly to provide pressure confinement for the cloud; (3) an ‘infinitely long-lived’ regime, in which the cloud lifetime becomes longer than the cooling time of gas swept up in the leading bow shock, so the cloud begins to accrete and grow; and (4) a ‘classical cloud destruction’ regime, where clouds are eventually destroyed by instabilities. In the final regime, the cloud lifetime can exceed the naive cloud-crushing time owing to conduction-induced compression. However, small and/or slow-moving clouds can also evaporate more rapidly than the cloud-crushing time. We develop simple analytic models that explain the simulated cloud destruction times in this regime. 
    more » « less