Objectives:Magnetic resonance imaging (MRI) using 1.5T or 3.0T systems is routinely employed for assessing wrist pathology; however, due to off-resonance artifacts and high power deposition, these high-field systems have drawbacks for real-time (RT) imaging of the moving wrist. Recently, high-performance 0.55T MRI systems have become available. In this proof-of-concept study, we tested the hypothesis that RT-MRI during continuous, active, and uninterrupted wrist motion is feasible with a high-performance 0.55T system at temporal resolutions below 100 ms and that the resulting images provide visualization of tissues commonly interrogated for assessing dynamic wrist instability. Methods:Participants were scanned during uninterrupted wrist radial-ulnar deviation and clenched fist maneuvers. Resulting images (nominal temporal resolution of 12.7–164.6 ms per image) were assessed for image quality. Feasibility of static MRI to supplement RT-MRI acquisition was also tested. Results:The RT images with temporal resolutions < 100 ms demonstrated low distortion and image artifacts, and higher reader assessment scores. Static MRI scans showed the ability to assess anatomical structures of interest in the wrist. Conclusion:RT-MRI of the wrist at a high temporal resolution, coupled with static MRI, is feasible with a high-performance 0.55T system, and may enable improved assessment of wrist dynamic dysfunction and instability. Advances in knowledge:Real-time MRI of the moving wrist is feasible with high-performance 0.55T and may improve the evaluation of dynamic dysfunction of the wrist.
more »
« less
Speech production real‐time MRI at 0.55 T
Abstract PurposeTo demonstrate speech‐production real‐time MRI (RT‐MRI) using a contemporary 0.55T system, and to identify opportunities for improved performance compared with conventional field strengths. MethodsExperiments were performed on healthy adult volunteers using a 0.55T MRI system with high‐performance gradients and a custom 8‐channel upper airway coil. Imaging was performed using spiral‐based balancedSSFPand gradient‐recalled echo (GRE) pulse sequences using a temporal finite‐difference constrained reconstruction. Speech‐production RT‐MRI was performed with three spiral readout durations (8.90, 5.58, and 3.48 ms) to determine trade‐offs with respect to articulator contrast, blurring, banding artifacts, and overall image quality. ResultsBoth spiral GRE and bSSFP captured tongue boundary dynamics during rapid consonant‐vowel syllables. Although bSSFP provided substantially higher SNR in all vocal tract articulators than GRE, it suffered from banding artifacts at TR > 10.9 ms. Spiral bSSFP with the shortest readout duration (3.48 ms, TR = 5.30 ms) had the best image quality, with a 1.54‐times boost in SNR compared with an equivalent GRE sequence. Longer readout durations led to increased SNR efficiency and blurring in both bSSFP and GRE. ConclusionHigh‐performance 0.55T MRI systems can be used for speech‐production RT‐MRI. Spiral bSSFP can be used without suffering from banding artifacts in vocal tract articulators, provide better SNR efficiency, and have better image quality than what is typically achieved at 1.5 T or 3 T.
more »
« less
- Award ID(s):
- 1828736
- PAR ID:
- 10572555
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Magnetic Resonance in Medicine
- Volume:
- 91
- Issue:
- 1
- ISSN:
- 0740-3194
- Page Range / eLocation ID:
- 337 to 343
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract PurposeTo determine the feasibility of simultaneous multi‐slice (SMS) real‐time MRI (RT‐MRI) at 0.55T for the evaluation of cardiac function. MethodsCardiac CINE MRI is routinely used to evaluate left‐ventricular (LV) function. The standard is sequential multi‐slice balanced SSFP (bSSFP) over a stack of short‐axis slices using electrocardiogram (ECG) gating and breath‐holds. SMS has been used in CINE imaging to reduce the number of breath‐holds by a factor of 2–4 at 1.5T, 3T, and recently at 0.55T. This work aims to determine if SMS is similarly effective in the RT‐MRI evaluation of cardiac function. We used an SMS bSSFP pulse sequence with golden‐angle spirals at 0.55T with an SMS factor of three. We cover the LV with three acquisitions for SMS, and nine for single‐band (SB). Imaging was performed on 9 healthy volunteers and 1 patient with myocardial fibrosis and sternal wires. A spatio‐temporal constrained reconstruction is used, with regularization parameters selected by a board‐certified cardiologist. Images were quantitatively analyzed with a normalized contrast and an Edge Sharpness (ES) score. ResultsThere was a statistically significant 2‐fold difference in contrast between SMS and SB and no significant difference in ES score. The contrast for SMS and SB were 13.38/29.05 at mid‐diastole and 10.79/22.26 at end‐systole; the ES scores for SMS and SB were 1.77/1.83 at mid‐diastole and 1.50/1.72 at end‐systole. ConclusionsSMS cardiac RT‐MRI at 0.55T is feasible and provides sufficient blood‐myocardium contrast to evaluate LV function in three slices simultaneously without any gating or periodic motion assumptions.more » « less
-
Abstract PurposeTo develop a robust single breath‐hold approach for volumetric lung imaging at 0.55T. MethodA balanced‐SSFP (bSSFP) pulse sequence with 3D stack‐of‐spiral (SoS) out‐in trajectory for volumetric lung imaging at 0.55T was implemented. With 2.7× undersampling, the pulse sequence enables imaging during a 17‐s breath‐hold. Image reconstruction is performed using 3D SPIRiT and 3D l1‐Wavelet regularizations. In two healthy volunteers, single breath‐hold SoS out‐in bSSFP was compared against stack‐of‐spiral UTE (spiral UTE) and half‐radial dual‐echo bSSFP (bSTAR), based on signal intensity (SI), blood‐lung parenchyma contrast, and image quality. In six patients with pathologies including lung nodules, fibrosis, emphysema, and air trapping, single breath‐hold SoS out‐in and bSTAR were compared against low‐dose computed tomography (LDCT). ResultsSoS out‐in bSSFP achieved 2‐mm isotropic resolution lung imaging with a single breath‐hold duration of 17 s. SoS out‐in (2‐mm isotropic) provided higher lung parenchyma and blood SI and blood‐lung parenchyma contrast compared to spiral UTE (2.4 × 2.4 × 2.5 mm3) and bSTAR (1.6‐mm isotropic). When comparing SI normalized by voxel size, SoS out‐in has lower lung parenchyma signal, higher blood signal, and a higher blood‐lung parenchyma contrast compared to bSTAR. In patients, SoS out‐in bSSFP was able to identify lung fibrosis and lung nodules of size 4 and 8 mm, and breath‐hold bSTAR was able to identify lung fibrosis and 8 mm nodules. ConclusionSingle breath‐hold volumetric lung imaging at 0.55T with 2‐mm isotropic spatial resolution is feasible using SoS out‐in bSSFP. This approach could be useful for rapid lung disease screening, and in cases where free‐breathing respiratory navigated approaches fail.more » « less
-
PurposeTo demonstrate the feasibility of high‐resolution morphologic lung MRI at 0.55 T using a free‐breathing balanced steady‐state free precession half‐radial dual‐echo imaging technique (bSTAR). MethodsSelf‐gated free‐breathing bSTAR (TE1/TE2/TR of 0.13/1.93/2.14 ms) lung imaging in five healthy volunteers and a patient with granulomatous lung disease was performed using a 0.55 T MR‐scanner. A wobbling Archimedean spiral pole (WASP) trajectory was used to ensure a homogenous coverage of k‐space over multiple breathing cycles. WASP uses short‐duration interleaves randomly tilted by a small polar angle and rotated by a golden angle about the polar axis. Data were acquired continuously over 12:50 min. Respiratory‐resolved images were reconstructed off‐line using compressed sensing and retrospective self‐gating. Reconstructions were performed with a nominal resolution of 0.9 mm and a reduced isotropic resolution of 1.75 mm corresponding to shorter simulated scan times of 8:34 and 4:17 min, respectively. Analysis of apparent SNR was performed in all volunteers and reconstruction settings. ResultsThe technique provided artifact‐free morphologic lung images in all subjects. The short TR of bSTAR in conjunction with a field strength of 0.55 T resulted in a complete mitigation of off‐resonance artifacts in the chest. Mean SNR values in healthy lung parenchyma for the 12:50 min scan were 3.6 ± 0.8 and 24.9 ± 6.2 for 0.9 mm and 1.75 mm reconstructions, respectively. ConclusionThis study demonstrates the feasibility of morphologic lung MRI with a submillimeter isotropic spatial resolution in human subjects with bSTAR at 0.55 T.more » « less
-
PurposeTo determineR2and transverse relaxation rates in healthy lung parenchyma at 0.55 T. This is important in that it informs the design and optimization of new imaging methods for 0.55T lung MRI. MethodsExperiments were performed in 3 healthy adult volunteers on a prototype whole‐body 0.55T MRI, using a custom free‐breathing electrocardiogram‐triggered, single‐slice echo‐shifted multi‐echo spin echo (ES‐MCSE) pulse sequence with respiratory navigation. Transverse relaxation ratesR2and and off‐resonance ∆fwere jointly estimated using nonlinear least‐squares estimation. These measurements were compared againstR2estimates from T2‐prepared balanced SSFP (T2‐Prep bSSFP) and estimates from multi‐echo gradient echo, which are used widely but prone to error due to different subvoxel weighting. ResultsThe meanR2and values of lung parenchyma obtained from ES‐MCSE were 17.3 ± 0.7 Hz and 127.5 ± 16.4 Hz (T2 = 61.6 ± 1.7 ms; = 9.5 ms ± 1.6 ms), respectively. The off‐resonance estimates ranged from −60 to 30 Hz. TheR2from T2‐Prep bSSFP was 15.7 ± 1.7 Hz (T2 = 68.6 ± 8.6 ms) and from multi‐echo gradient echo was 131.2 ± 30.4 Hz ( = 8.0 ± 2.5 ms). Paired t‐test indicated that there is a significant difference between the proposed and reference methods (p < 0.05). The meanR2estimate from T2‐Prep bSSFP was slightly smaller than that from ES‐MCSE, whereas the mean and estimates from ES‐MCSE and multi‐echo gradient echo were similar to each other across all subjects. ConclusionsJoint estimation of transverse relaxation rates and off‐resonance is feasible at 0.55 T with a free‐breathing electrocardiogram‐gated and navigator‐gated ES‐MCSE sequence. At 0.55 T, the meanR2of 17.3 Hz is similar to the reported meanR2of 16.7 Hz at 1.5 T, but the mean of 127.5 Hz is about 5–10 times smaller than that reported at 1.5 T.more » « less
An official website of the United States government

