skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bold zebrafish ( danio rerio ) learn faster in an associative learning task
Abstract Animals differ in their ability to learn. One potential factor contributing to learning differences is personality types. We investigated the relationship between learning and the bold-shy continuum by comparing performance of bold and shy zebrafish in conditioned place preference (CPP) and 2 choice tasks. Bold fish learned significantly faster than the shy fish but there were no differences in their final performance. When tested in the 2 choice task, we found no clear evidence of learning, however bold fish made more initial choices than shy fish. Overall,our study suggests that bold fish tend to be faster learners when compared to shy fish. The lack of differences in the final change in behavior suggests that the learning difference is due to neophobic tendencies and resulting initial interactions with the learning stimulus.  more » « less
Award ID(s):
1942202
PAR ID:
10572672
Author(s) / Creator(s):
; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Effective management of wild animals requires understanding how predation and harvest alter the composition of populations. These top‐down processes can alter consumer body size and behavior and thus should also have consequences for bottom‐up processes because (1) body size is a critical determinant of the amount of nutrients excreted and (2) variation in foraging behavior, which is strongly influenced by predation, can determine the amount and spatial distribution of nutrients. Changes to either are known to affect ecosystem‐scale nutrient dynamics, but the consequences of these dynamics on ecosystem processes are poorly understood. We used an individual‐based model of an artificial reef (AR) and reef fish in a subtropical seagrass bed to test how fish body size can interact with variation in foraging behavior at the population and individual levels to affect seagrass production in a nutrient‐limited system. Seagrass production dynamics can be driven by both belowground (BGPP) and aboveground primary production (AGPP); thus, we quantified ecosystem‐scale production via these different mechanistic pathways. We found that (1) populations of small fish generated greater total primary production (TLPP = BGPP + AGPP) than large fish, (2) fish that foraged more increased TLPP more than those that spent time sheltering on ARs, and (3) small fish that foraged more led to greatest increases in TLPP. The mechanism by which this occurred was primarily through increased BGPP, highlighting the importance of cryptic belowground dynamics in seagrass ecosystems. Populations of extremely bold individuals (i.e., foraged significantly more) slightly increased TLPP but strongly affected the distribution of production, whereby bold individuals increased BGPP, while populations of shy individuals increased AGPP. Taken together, these results provide a link between consumer body size, variation in consumer behavior, and primary production—which, in turn, will support secondary production for fisheries. Our study suggests that human‐induced changes—such as fishing—that alter consumer body size and behavior will fundamentally change ecosystem‐scale production dynamics. Understanding the ecosystem effects of harvest on consumer populations is critical for ecosystem‐based management, including the development of ARs for fisheries. 
    more » « less
  2. Abstract Lakes are vulnerable to climate change, and warming rates in the Arctic are faster than anywhere on Earth. Fishes are sensitive to changing temperatures, which directly control physiological processes. Food availability should partly dictate responses to climate change because energetic demands change with temperature, but few studies have simultaneously examined temperature and food availability.We used a fully factorial experiment to test effects of food availability and temperature (7.6, 12.7, and 17.4°C; 50 days) on growth, consumption, respiration, and excretion, and effects of temperature (12 and 19.3°C; 27 days) on habitat use and growth of a common, but understudied, mid‐level consumer, slimy sculpinCottus cognatus, in arctic lakes. We also used bioenergetics modelling to predict consumptive demand under future warming scenarios.Growth rates were 3.4× higher at 12.7°C in high food compared to low food treatments, but the magnitude of differences depended on temperature. Within low food treatments, there was no statistical difference in growth rates among temperatures, suggesting food limitation. Consumption, respiration, and nitrogen excretion increased with temperature independent of food availability. Lower growth rates coincided with lower phosphorus excretion at the highest temperature, suggesting that fish selectively retained phosphorus at high temperatures and low food. In habitat choice experiments, fish were more likely to use the 12°C side of the tank, closely matching their optimal temperature. We predicted a 9% increase in consumption is required to maintain observed growth under a 4°C warming scenario.These results highlight considering changes in food resources and other associated indirect effects (e.g. excretion) that accompany changing temperatures with climate change. Depending on how food webs respond to warming, fish may cope with predicted warming if density‐dependent feedback maintains population sizes. 
    more » « less
  3. With the growing prevalence of hypoxia (O2 levels ≤2 mg l−1) in aquatic and marine ecosystems, there is increasing interest in the adaptive mechanisms fish may employ to better their performance in stressful environments. Here, we investigated the contribution of a proposed strategy for enhancing tissue O2 extraction – plasma-accessible carbonic anhydrase (CA-IV) – under hypoxia in a species of estuarine fish (red drum, Sciaenops ocellatus) that thrives in fluctuating habitats. We predicted that hypoxia-acclimated fish would increase the prevalence of CA-IV in aerobically demanding tissues to confer more efficient tissue O2 extraction. Furthermore, we predicted the phenotypic changes to tissue O2 extraction that occur with hypoxia acclimation may improve respiratory and swim performance under 100% O2 conditions (i.e. normoxia) when compared with performance in fish that have not been acclimated to hypoxia. Interestingly, there were no significant differences in relative CA-IV mRNA expression, protein abundance or enzyme activity between the two treatments, suggesting CA-IV function is maintained under hypoxia. Likewise, respiratory performance of hypoxia-acclimated fish was similar to that of control fish when tested in normoxia. Critical swim speed (Ucrit) was significantly higher in hypoxia-acclimated fish but translated to marginal ecological benefits with an increase of ∼0.3 body lengths per second. Instead, hypoxia-acclimated fish may have relied more heavily on anaerobic metabolism during their swim trials, utilizing burst swimming 1.5 times longer than control fish. While the maintenance of CA-IV may still be an important contributor for hypoxia tolerance, our evidence suggests hypoxia-acclimated red drum are using other mechanisms to cope in an O2-depleted environment. 
    more » « less
  4. ABSTRACT Individually distinctive vocalizations are widespread in nature, although the ability of receivers to discriminate these signals has only been explored through limited taxonomic and social lenses. Here, we asked whether anuran advertisement calls, typically studied for their role in territory defense and mate attraction, facilitate recognition and preferential association with partners in a pair-bonding poison frog (Ranitomeya imitator). Combining no- and two-stimulus choice playback experiments, we evaluated behavioral responses of females to male acoustic stimuli. Virgin females oriented to and approached speakers broadcasting male calls independent of caller identity, implying that females are generally attracted to male acoustic stimuli outside the context of a pair bond. When pair-bonded females were presented with calls of a mate and a stranger, they showed significant preference for calls of their mate. Moreover, behavioral responses varied with breeding status: females with eggs were faster to approach stimuli than females that were pair bonded but did not currently have eggs. Our study suggests a potential role for individual vocal recognition in the formation and maintenance of pair bonds in a poison frog and raises new questions about how acoustic signals are perceived in the context of monogamy and biparental care. 
    more » « less
  5. Iwanowicz, Luke R (Ed.)
    ABSTRACT The mummichog,Fundulus heteroclitus, an abundant estuarine fish broadly distributed along the eastern coast of North America, has repeatedly evolved tolerance to otherwise lethal levels of aromatic hydrocarbon exposure. This tolerance is linked to reduced activation of the aryl hydrocarbon receptor (AHR) signaling pathway. In other animals, the AHR has been shown to influence the gastrointestinal-associated microbial community, particularly when activated by the model toxic pollutant 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126) and other dioxin-like compounds. To understand host population and PCB-126 exposure effects on mummichog gut microbiota, we sampled two populations of wild fish, one from a PCB-contaminated environment (New Bedford Harbor, MA, USA) and the other from a much less polluted location (Scorton Creek, MA, USA), as well as laboratory-reared F2 generation fish originating from each of these populations. We examined the microbes associated with the gut of these fish using amplicon sequencing of bacterial and archaeal small subunit ribosomal RNA genes. Fish living in the PCB-polluted site had high microbial alpha and beta diversity compared to fish from the low PCB site. These differences between wild fish were not present in laboratory-reared F2 fish that originated from the same populations. Microbial compositional differences existed between wild and lab-reared fish, with the wild fish dominated by Vibrionaceae and the lab-reared fish by Enterococceae. These results suggest that mummichog habitat and/or environmental conditions have a stronger influence on the mummichog gut microbiome compared to population or hereditary-based influences. Mummichog are important eco-evolutionary model organisms; this work reveals their importance for exploring host-environmental-microbiome dynamics. IMPORTANCEThe mummichog fish, a common resident of North America's east coast estuaries, has evolved the ability to survive in waters contaminated with toxic chemicals that would typically be deadly. Our study investigates how living in and adapting to these toxic environments may affect their gut microbiomes. We compared mummichogs from a polluted area in Massachusetts with those from a non-polluted site and found significant differences in their gut microbes. Interestingly, when we raised the next generation of these fish in a lab, these differences disappeared, suggesting that the environment plays a more crucial role in shaping the gut microbiome than genetics. Understanding these changes helps shed light on how animals and their associated microbiomes adapt to pollution, which can inform conservation efforts and our broader understanding of environmental impacts on host-microbe dynamics. 
    more » « less