Policy gradient methods enjoy strong practical performance in numerous tasks in reinforcement learning. Their theoretical understanding in multiagent settings, however, remains limited, especially beyond two-player competitive and potential Markov games. In this paper, we develop a new framework to characterize optimistic policy gradient methods in multi-player Markov games with a single controller. Specifically, under the further assumption that the game exhibits an equilibrium collapse, in that the marginals of coarse correlated equilibria (CCE) induce Nash equilibria (NE), we show convergence to stationary Ο΅-NE in O(1/Ο΅2) iterations, where O(β
) suppresses polynomial factors in the natural parameters of the game. Such an equilibrium collapse is well-known to manifest itself in two-player zero-sum Markov games, but also occurs even in a class of multi-player Markov games with separable interactions, as established by recent work. As a result, we bypass known complexity barriers for computing stationary NE when either of our assumptions fails. Our approach relies on a natural generalization of the classical Minty property that we introduce, which we anticipate to have further applications beyond Markov games.
more »
« less
Roping in Uncertainty: Robustness and Regularization in Markov Games
We study robust Markov games (RMG) with π -rectangular uncertainty. We show a general equivalence between computing a robust Nash equilibrium (RNE) of a π -rectangular RMG and computing a Nash equilibrium (NE) of an appropriately constructed regularized MG. The equivalence result yields a planning algorithm for solving π -rectangular RMGs, as well as provable robustness guarantees for policies computed using regularized methods. However, we show that even for just reward-uncertain two-player zero-sum matrix games, computing an RNE is PPAD-hard. Consequently, we derive a special uncertainty structure called efficient player-decomposability and show that RNE for two-player zero-sum RMG in this class can be provably solved in polynomial time. This class includes commonly used uncertainty sets such as πΏ1 and πΏβ ball uncertainty sets.
more »
« less
- PAR ID:
- 10573129
- Publisher / Repository:
- Proceedings of Machine Learning Research
- Date Published:
- Volume:
- 235
- Page Range / eLocation ID:
- 35267--35295
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We study the application of iterative first-order methods to the problem of computing equilibria of large-scale two-player extensive-form games. First-order methods must typically be instantiated with a regularizer that serves as a distance-generating function for the decision sets of the players. For the case of two-player zero-sum games, the state-of-the-art theoretical convergence rate for Nash equilibrium is achieved by using the dilated entropy function. In this paper, we introduce a new entropy-based distance-generating function for two-player zero-sum games, and show that this function achieves significantly better strong convexity properties than the dilated entropy, while maintaining the same easily-implemented closed-form proximal mapping. Extensive numerical simulations show that these superior theoretical properties translate into better numerical performance as well. We then generalize our new entropy distance function, as well as general dilated distance functions, to the scaled extension operator. The scaled extension operator is a way to recursively construct convex sets, which generalizes the decision polytope of extensive-form games, as well as the convex polytopes corresponding to correlated and team equilibria. By instantiating first-order methods with our regularizers, we develop the first accelerated first-order methods for computing correlated equilibra and ex-ante coordinated team equilibria. Our methods have a guaranteed 1/T rate of convergence, along with linear-time proximal updates.more » « less
-
We characterize offline data poisoning attacks on Multi-Agent Reinforcement Learning (MARL), where an attacker may change a data set in an attempt to install a (potentially fictitious) unique Markov-perfect Nash equilibrium for a two-player zero-sum Markov game. We propose the unique Nash set, namely the set of games, specified by their Q functions, with a specific joint policy being the unique Nash equilibrium. The unique Nash set is central to poisoning attacks because the attack is successful if and only if data poisoning pushes all plausible games inside it. The unique Nash set generalizes the reward polytope commonly used in inverse reinforcement learning to MARL. For zero-sum Markov games, both the inverse Nash set and the set of plausible games induced by data are polytopes in the Q function space. We exhibit a linear program to efficiently compute the optimal poisoning attack. Our work sheds light on the structure of data poisoning attacks on offline MARL, a necessary step before one can design more robust MARL algorithms.more » « less
-
Policy Space Response Oracles (PSRO) is a reinforcement learning (RL) algo- rithm for two-player zero-sum games that has been empirically shown to find approximate Nash equilibria in large games. Although PSRO is guaranteed to converge to an approximate Nash equilibrium and can handle continuous actions, it may take an exponential number of iterations as the number of information states (infostates) grows. We propose Extensive-Form Double Oracle (XDO), an extensive-form double oracle algorithm for two-player zero-sum games that is guar- anteed to converge to an approximate Nash equilibrium linearly in the number of infostates. Unlike PSRO, which mixes best responses at the root of the game, XDO mixes best responses at every infostate. We also introduce Neural XDO (NXDO), where the best response is learned through deep RL. In tabular experiments on Leduc poker, we find that XDO achieves an approximate Nash equilibrium in a number of iterations an order of magnitude smaller than PSRO. Experiments on a modified Leduc poker game and Oshi-Zumo show that tabular XDO achieves a lower exploitability than CFR with the same amount of computation. We also find that NXDO outperforms PSRO and NFSP on a sequential multidimensional continuous-action game. NXDO is the first deep RL method that can find an approximate Nash equilibrium in high-dimensional continuous-action sequential games. Experiment code is available at https://github.com/indylab/nxdo.more » « less
-
Multi-agent reinforcement learning (MARL) lies at the heart of a plethora of applications involving the interaction of a group of agents in a shared unknown environment. A prominent framework for studying MARL is Markov games, with the goal of finding various notions of equilibria in a sample-efficient manner, such as the Nash equilibrium (NE) and the coarse correlated equilibrium (CCE). However, existing sample-efficient approaches either require tailored uncertainty estimation under function approximation, or careful coordination of the players. In this paper, we propose a novel model-based algorithm, called VMG, that incentivizes exploration via biasing the empirical estimate of the model parameters towards those with a higher collective best-response values of all the players when fixing the other playersβ policies, thus encouraging the policy to deviate from its current equilibrium for more exploration. VMG is oblivious to different forms of function approximation, and permits simultaneous and uncoupled policy updates of all players. Theoretically, we also establish that VMG achieves a near-optimal regret for finding both the NEs of two-player zero-sum Markov games and CCEs of multi-player general-sum Markov games under linear function approximation in an online environment, which nearly match their counterparts with sophisticated uncertainty quantification.more » « less
An official website of the United States government

