Due to the growing number of people infected with the new coronavirus globally, which weakens immunity, there has been an increase in bacterial infections. Hence, knowledge about simple and low-cost synthesis methods of materials with good structural and antimicrobial properties is of great importance. A material obtained through the combination of a nanoscale hydroxyapatite material (with good biocompatibility) and titanium dioxide (with good degradation properties of organic molecules) can absorb and decompose bacteria. In this investigation, three different synthesis routes used to prepare hydroxyapatite/titanium dioxide nanomaterials are examined. The morphology and semiquantitative chemical composition are characterized by scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX). The obtained materials’ phase and structural characterization are determined using the X-ray powder diffraction method (XRD). The crystallite sizes of the obtained materials are in the range of 8 nm to 15 nm. Based on XRD peak positions, the hexagonal hydroxyapatite phases are formed in all samples along with TiO2 anatase and rutile phases. According to SEM and TEM analyses, the morphology of the prepared samples differs depending on the synthesis route. The EDX analysis confirmed the presence of Ti, Ca, P, and O in the obtained materials. The IR spectroscopy verified the vibration bands characteristic for HAp and titanium. The investigated materials show excellent antimicrobial and photocatalytic properties.
more »
« less
Introducing dusty plasma particle growth of nanospherical titanium dioxide
In dusty plasma environments, spontaneous growth of nanoparticles from reactive gases has been extensively studied for over three decades, primarily focusing on hydrocarbons and silicate particles. Here, we introduce the growth of titanium dioxide, a wide bandgap semiconductor, as dusty plasma nanoparticles. The resultant particles exhibited a spherical morphology and reached a maximum monodisperse radius of 235 ± 20 nm after growing for 70 s. The particle grew linearly, and the growth displayed a cyclic behavior; that is, upon reaching their maximum radius, the largest particles fell out of the plasma, and the next growth cycle immediately followed. The particles were collected after being grown for different amounts of time and imaged using scanning electron microscopy. Further characterization was carried out using energy dispersive x-ray spectroscopy, x-ray diffraction, and Raman spectroscopy to elucidate the chemical composition and crystalline properties of the maximally sized particles. Initially, the as-grown particles exhibited an amorphous structure after 70 s. However, annealing treatments at temperatures of 400 and 800 °C induced crystallization, yielding anatase and rutile phases, respectively. Annealing at 600 °C resulted in a mixed phase of anatase and rutile. These findings open avenues for a rapid and controlled growth of titanium dioxide via dusty plasma.
more »
« less
- Award ID(s):
- 2148653
- PAR ID:
- 10573723
- Publisher / Repository:
- Applied Physics Letters
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 124
- Issue:
- 14
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, we demonstrate the growth and phase stabilization of ultrawide bandgap polycrystalline rutile germanium dioxide (GeO2) thin films. GeO2 thin films were deposited using RF magnetron sputtering on r-plane sapphire (Al2O3) substrates. As-deposited films were x-ray amorphous. Postdeposition annealing was performed at temperatures between 650 and 950 °C in an oxygen or nitrogen ambient. Annealing at temperatures from 750 to 950 °C resulted in mixed-phase polycrystalline films containing tetragonal (rutile) GeO2, hexagonal (α-quartz) GeO2, and/or cubic (diamond) germanium (Ge). When nitrogen was used as the anneal ambient, mixed GeO2 phases were observed. In contrast, annealing in oxygen promoted stabilization of the r-GeO2 phase. Grazing angle x-ray diffraction showed a preferred orientation of (220) r-GeO2 for all crystallized films. The combination of O2 annealing and O2 flux during growth resulted in r-GeO2 films with highly preferential alignment. Using electron microscopy, we observed an interfacial layer of hexagonal-oriented GeO2 with epitaxial alignment to the (11¯02) Al2O3 substrate, which may help stabilize the top polycrystalline r-GeO2 film.more » « less
-
The hydrolysis–condensation reaction of TiO 2 was adapted to the phase inversion temperature (PIT)-nano-emulsion method as a low energy approach to gain control over the size and phase purity of the resulting metal oxide particles. Three different PIT-nano-emulsion syntheses were designed, each one intended to isolate high purity rutile, anatase, and brookite phase particles. Three different emulsion systems were prepared, with a pH of either strongly acidic (H 2 O : HNO 3 , pH ∼0.5), moderately acidic (H 2 O : isopropanol, pH ∼4.5), or alkaline (H 2 O : NaOH, pH ∼12). PIT-nano-emulsion syntheses of the amorphous TiO 2 particles were conducted under these conditions, resulting in average particle diameter distributions of ∼140 d nm (strongly acidic), ∼60 d nm (moderately acidic), and ∼460 d nm (alkaline). Different thermal treatments were performed on the amorphous particles obtained from the PIT-nano-emulsion syntheses. Raman spectroscopy and powder X-ray diffraction (PXRD) were employed to corroborate that the thermally treated particles under H 2 O : HNO 3 (at 850 °C), H 2 O : NaOH (at 400 °C), and H 2 O : isopropanol (at 200 °C) yielded highly-pure rutile, anatase, and brookite phases, respectively. Herein, an experimental approach based on the PIT-nano-emulsion method is demonstrated to synthesize phase-controlled TiO 2 particles with high purity employing fewer toxic compounds, reducing the quantity of starting materials, and with a minimum energy input, particularly for the almost elusive brookite phase.more » « less
-
Vanadium oxide (VOx) compounds feature various polymorphs, including V2O5 and VO2, with attractive temperature-tunable optical and electrical properties. However, to achieve the desired material property, high-temperature post-deposition annealing of as-grown VOx films is mostly needed, limiting its use for low-temperature compatible substrates and processes. Herein, we report on the low-temperature hollow-cathode plasma-enhanced atomic layer deposition (ALD) of crystalline vanadium oxide thin films using tetrakis(ethylmethylamido)vanadium and oxygen plasma as a precursor and coreactant, respectively. To extract the impact of the type of plasma source, VOx samples were also synthesized in an inductively coupled plasma-enhanced ALD reactor. Moreover, we have incorporated in situ Ar-plasma and ex situ thermal annealing to investigate the tunability of VOx structural properties. Our findings confirm that both plasma-ALD techniques were able to synthesize as-grown polycrystalline V2O5 films at 150 °C. Postdeposition thermal annealing converted the as-grown V2O5 films into different crystalline VOx states: V2O3, V4O9, and VO2. The last one, VO2 is particularly interesting as a phase-change material, and the metal-insulator transition around 70 °C has been confirmed using temperature-dependent x-ray diffraction and resistivity measurements.more » « less
-
Abstract Anisotropic growth of nanostructures from individual nickel nanoparticles was observed during in situ heating experiments in an environmental scanning electron microscope (ESEM) at 800°C under water vapor atmosphere. The morphology of nanostructures exhibited one directional growth with rates ranging below 1.8 nm/s. Energy dispersive X‐ray spectroscopy and selected area electron diffraction confirmed NiO stoichiometry of the growing nanostructures. Variations of the oxygen partial pressure during ex situ annealing and in situ ESEM heating experiments elucidate that anisotropic NiO growth is energetically favored in areas where the local surface energy density is relatively high. Growth of NiO nanostructures was absent in dry air and dry nitrogen environments and required the presence of water vapor. The results of this study suggest that the manipulation of surface energy prior to exposure to water vapor at elevated temperatures can prevent unwanted oxide nanostructure growth.more » « less
An official website of the United States government

