skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Open science 2.0: revolutionizing spatiotemporal data sharing and collaboration
Abstract The Spatial Data Lab (SDL) project is a collaborative initiative by the Center for Geographic Analysis at Harvard University, KNIME, Future Data Lab, China Data Institute, and George Mason University. Co-sponsored by the NSF IUCRC Spatiotemporal Innovation Center, SDL aims to advance applied research in spatiotemporal studies across various domains such as business, environment, health, mobility, and more. The project focuses on developing an open-source infrastructure for data linkage, analysis, and collaboration. Key objectives include building spatiotemporal data services, a reproducible, replicable, and expandable (RRE) platform, and workflow-driven data analysis tools to support research case studies. Additionally, SDL promotes spatiotemporal data science training, cross-party collaboration, and the creation of geospatial tools that foster inclusivity, transparency, and ethical practices. Guided by an academic advisory committee of world-renowned scholars, the project is laying the foundation for a more open, effective, and robust scientific enterprise.  more » « less
Award ID(s):
1841520 1841403
PAR ID:
10574328
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Computational Urban Science
Date Published:
Journal Name:
Computational Urban Science
Volume:
5
Issue:
1
ISSN:
2730-6852
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many previous studies have shown that open-source technologies help democratize information and foster collaborations to enable addressing global physical and societal challenges. The outbreak of the novel coronavirus has imposed unprecedented challenges to human society. It affects every aspect of livelihood, including health, environment, transportation, and economy. Open-source technologies provide a new ray of hope to collaboratively tackle the pandemic. The role of open source is not limited to sharing a source code. Rather open-source projects can be adopted as a software development approach to encourage collaboration among researchers. Open collaboration creates a positive impact in society and helps combat the pandemic effectively. Open-source technology integrated with geospatial information allows decision-makers to make strategic and informed decisions. It also assists them in determining the type of intervention needed based on geospatial information. The novelty of this paper is to standardize the open-source workflow for spatiotemporal research. The highlights of the open-source workflow include sharing data, analytical tools, spatiotemporal applications, and results and formalizing open-source software development. The workflow includes (i) developing open-source spatiotemporal applications, (ii) opening and sharing the spatiotemporal resources, and (iii) replicating the research in a plug and play fashion. Open data, open analytical tools and source code, and publicly accessible results form the foundation for this workflow. This paper also presents a case study with the open-source spatiotemporal application development for air quality analysis in California, USA. In addition to the application development, we shared the spatiotemporal data, source code, and research findings through the GitHub repository. 
    more » « less
  2. Abstract University research labs focusing on education, psychology, and cognitive development have been collaborating with museums more and more over the past decade. Nevertheless, cognitive science labs that primarily engage in basic as opposed to applied research may find it difficult to entice museums to collaborate, and existing collaborations may fall short of their full potential to garner benefits to labs and museums alike. Here, we focus on a kind of lab and museum collaboration that has common content, philosophy, and programming and impacts both scientific theory development and museum practice. By illustrating one example of a collaboration between the Lab for the Developing Mind at New York University and the National Museum of Mathematics in New York City, we offer practical tips and suggestions for other cognitive science labs aiming to achieve strong lab‐museum synergy. 
    more » « less
  3. Abstract Here, we describe the development, structure, and effectiveness of an outreach program, DrosoPHILA, that leverages the tools of our fly neurodevelopmental research program at the University of Pennsylvania to reinforce the biology curriculum in local public schools. DrosoPHILA was developed and is sustained by a continued collaboration between members of the Bashaw lab, experienced outreach educators, and teachers in the School District of Philadelphia. Since the program’s inception, we have collaborated with 18 teachers and over 2400 students. Student outcome data indicates significant positive attitude shifts around science identity and grade-appropriate knowledge gains. 
    more » « less
  4. Abstract This paper maps research outcomes and identifies spillover effects at a US University Research Center (URC) that offers user facilities for nanotechnology research. We use scientometric and network science approaches to analyze measures of topical orientation, productivity, impact, and collaboration applied to URC-related Web of Science abstract publications records. A focus is on the analysis of spillover effects on external organizations (i.e., non-affiliated users). Our findings suggest the URC’s network relies on external organizations acting as brokers, to provide access to the facilities to other external organizations. Analysis of heterophily indicates that collaboration among internal and external organizations is enhanced by the facilities, while articles written by a mix of co-authors affiliated with internal and external organizations are likely to be more cited. These results provide insights on how URCs with user facilities can create conditions for diverse collaboration and greater research impact. 
    more » « less
  5. Computer labs are commonly used in computing education to help students reinforce the knowledge obtained in classrooms and to gain hands-on experience on specific learning subjects. While traditional computer labs are based on physical computer centers on campus, more and more virtual computer lab systems (see, e.g., [1, 2, 3, 4]) have been developed that allow students to carry out labs on virtualized resources remotely through the internet. Virtual computer labs make it possible for students to use their own computers at home, instead of relying on computer centers on campus to work on lab assignments. However, they also make it difficult for students to collaborate, due to the fact that students work remotely and there is a lack of support of sharing and collaboration. This is in contrast to traditional computer labs where students naturally feel the presence of their peers in a physical lab room and can easily work together and help each other if needed. Funded by NSF’s Division of Undergraduate Education, this project develops a collaborative virtual computer lab (CVCL) environment to support collaborative learning in virtual computer labs. The CVCL environment leverages existing open source collaboration tools and desktop sharing technologies and adds new functions unique to virtual computer labs to make it easy for students to collaborate while working on computer labs remotely. It also implements several collaborative lab models to support different forms of collaboration in both formal and informal settings. We have developed the main functions of the CVCL environment and begun to use it in classes in the Computer Science (CS) department at Georgia State University. While the original project focuses on computer labs in its traditional sense, the issue of lack of collaboration applies to much broader learning settings where students work on tasks or assignments on computers, with or without being associated with a lab environment. Due to the high mobility of students in modern campuses and the fact that many learning activities are carried out over the Internet, computer-based learning increasingly happen in students’ personal spaces (e.g., homes, apartments), as opposed to public learning spaces (e.g., laboratories, libraries). In these personal spaces, it is difficult for students to get help from classmates or teaching assistants (TAs) when encountering problems. As a result, collaborative learning is difficult and rare. This is especially true for urban universities such as Georgia State University where a significant portion of students are part-time students and/or commute. To address this issue, we intend to broaden the concept of “virtual computer lab” to include general computer based learning happening in “virtual space,” which is any location where people can meet using networked digital devices [5]. Virtual space is recognized as an increasingly important part of “learning spaces” and asks for support from both the technology aspect and learning theory aspect [5]. Collaborative learning environments that support remote collaboration in virtual computer labs would fill an important need in this broader trend. 
    more » « less