skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D Printed Helmholtz Microstreaming Structures: Analysis of Bubble Dynamics, Bulk Fluid Disturbance, and Resiliency in Nonquiescent Conditions
Microstreaming of acoustically excited bubbles presents great potential to mitigate fouling for membrane technologies. However, the acoustic streaming in bulk fluids under membrane separation conditions is not well explored. In this work, we investigate the microstreaming of 3D printed Helmholtz-like bubble-trapping structures (BTSs) under no flow, pressurized, and crossflow conditions that are relevant to membrane applications. Trapped bubbles are shown to generate formidable microstreaming that spans millimeter distances with velocity as high as 125 mm/s in a bulk aqueous medium. However, complex mode shapes of the bubble oscillation and bubble growth were observed during the frequency sweep. As a result, the streaming velocity decreases by 76% over 30 min, under single frequency excitation. The BTS displayed effective microstreaming under hydrostatic pressure up to 9.0 kPa, and under a crossflow velocity up to 0.2 mm/s, where the microstreaming zone reduced to <1 mm. The results provide the operation window, as well as challenges, for future integration of the BTS into bulk membrane separation processes.  more » « less
Award ID(s):
2310937
PAR ID:
10574547
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
ACS ES&T Water
Volume:
4
Issue:
4
ISSN:
2690-0637
Page Range / eLocation ID:
1741 to 1750
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a novel configuration to generate strong acoustic streaming vortices by a pinned oscillating membrane in a microchannel, its characterizations via advanced measurement techniques, and initial studies in application by augmentation of gas exchange across a permeable membrane towards microfluidic artificial lung technology. The configuration is stable over time and does not create any obstruction in flow passages. For an audible- frequency 20 Vpp input to a piezo buzzer, streaming velocity was measured up to 47 mm/s. Mixing from helical flow patterns in the microchannel augments gas transfer rate across the membrane up to 3.4 times compared to no actuation, allowing larger channel dimensions (better facilitation of scale-up manufacturing) and reduced shear (more hemocompatible) in microchannel-based artificial lung systems. 
    more » « less
  2. We study bubble break-up in homogeneous and isotropic turbulence by direct numerical simulations of the two-phase incompressible Navier–Stokes equations. We create the turbulence by forcing in physical space and introduce the bubble once a statistically stationary state is reached. We perform a large ensemble of simulations to investigate the effect of the Weber number (the ratio of turbulent and surface tension forces) on bubble break-up dynamics and statistics, including the child bubble size distribution, and discuss the numerical requirements to obtain results independent of grid size. We characterize the critical Weber number below which no break-up occurs and the associated Hinze scale $$d_h$$ . At Weber number close to stable conditions (initial bubble sizes $$d_0\approx d_h$$ ), we observe binary and tertiary break-ups, leading to bubbles mostly between $$0.5d_h$$ and $$d_h$$ , a signature of a production process local in scale. For large Weber numbers ( $$d_0> 3d_h$$ ), we observe the creation of a wide range of bubble radii, with numerous child bubbles between $$0.1d_h$$ and $$0.3d_h$$ , an order of magnitude smaller than the parent bubble. The separation of scales between the parent and child bubble is a signature of a production process non-local in scale. The formation mechanism of these sub-Hinze scale bubbles relates to rapid large deformation and successive break-ups: the first break-up in a sequence leaves highly deformed bubbles which will break again, without recovering a spherical shape and creating an array of much smaller bubbles. We discuss the application of this scenario to the production of sub-Hinze bubbles under breaking waves. 
    more » « less
  3. AIAA (Ed.)
    The mixing characteristics of an active coaxial injector in crossflow configurations are explored in this paper. A miniature rectangular CD nozzle generates crossflow for the injector for subsonic and supersonic test conditions. The flowfield of the active injection system consists of an actuation air jet at the inner core of the coaxial nozzle (1mm ID) that provides large mean and fluctuating velocity profiles in the shear layers of a fluid stream injected surrounding the core through an annular nozzle with ID=1.5 mm and OD=1.96 mm. The baseline flowfield of the annular stream in various crossflow conditions was studied first without actuation. The injector's active and passive actuation modes of operation are then evaluated and compared across multiple crossflow conditions with the baseline data. In the active mode, the annular stream is actuated by a pulsed jet operating at 17 kHz. In steady mode, the actuation jet is a steady coaxial underexpanded jet. Measurements using planar laser-induced fluorescence (PLIF) indicate that the active coaxial injection approach using high-frequency pulsed jets at the core significantly improves mixing of the acetone-seeded annular stream in supersonic crossflow conditions compared to the steady and baseline test cases. Data suggests that such a system has the potential to be evaluated further for real-life flow mixing and control applications, such as supersonic and hypersonic combustors. 
    more » « less
  4. Jetting dynamics from bursting bubbles play a key role in mediating mass and momentum transport across the air–liquid interface, and have attracted widespread interest from researchers across disciplines. In marine environments, this phenomenon has drawn considerable attention due to its role in releasing biochemical contaminants, such as extracellular polymeric substances, into the atmosphere through aerosol production. These biocontaminants often exhibit non-Newtonian characteristics, yet the physics of bubble bursting with a rheologically complex layer at the bubble–liquid interface remains largely unexplored. In this study, we experimentally investigate the jetting dynamics of bubble bursting events in the presence of such a polymeric compound layer. Using bubbles coated by a polyethylene oxide solution, we document the cavity collapse and jetting dynamics produced by bubble bursting. At a fixed polymer concentration, the jet velocity increases while the jet radius decreases with an increasing compound layer volume fraction, as a result of stronger capillary wave damping due to capillary wave separation at the compound interface as well as the formation of smaller cavity cone angles during bubble cavity collapse. These dynamics produce smaller and more numerous jet drops. Meanwhile, as the polymer concentration increases, the jet velocity decreases while the jet radius increases for the same compound layer fraction due to the increasing viscoelastic stresses. In addition, fewer jet drops are ejected as the jets become slower and broader with increasing polymer concentration, as viscoelastic stresses persist throughout the jet formation and thinning process. We further obtain, for the first time, a regime map delineating the conditions for jet drop ejection versus no jet drop ejection in bursting bubbles coated with a polymeric compound layer. Our results may provide new insights into the mechanisms of mass transport of organic materials in bubble-mediated aerosolization processes, advancing our understanding of marine biology and environmental science. 
    more » « less
  5. Wirelessly powered and controllable microscale propulsion in 3-D space is of critical importance to micro swimming drones serving as an active and maneuverable in vivo cargo for medical uses. This aritcle describes a 3-D micro swimming drone navigating in 3-D space, propelled by unidirectional microstreaming flow from acoutsically oscillating bubbles. 3-D propulsion is enabled by multiple bubbles with different lengths embedded in different orientations inside the drone body. Each bubble generats propulsion by applying acoustic field at its resonance frequency. Therefore, 3-D propulsion in any direction is achievable by resonating bubbles individually or jointly. The drone with such a complex design was fabricated by a two-photon polymerization 3-D printer. For stable maneuverability, a non-uniform mass distribution of the drone is designed to restore the drone to the designated posture under any disturbances. The restoration mechanism is formulated by a mathematical model, predicting the restoring time and shows an excellent agreemnt with the experimental results. This 3-D micro swimning drone proves its robustness as a manueverable microrobot navigating along programmble path in a 3-D space through selective and joint actuation of microbubbles. 
    more » « less