skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on September 1, 2025

Title: Beyond order‐based nursing workload: A retrospective cohort study in intensive care units
Abstract IntroductionIn order to be positioned to address the increasing strain of burnout and worsening nurse shortage, a better understanding of factors that contribute to nursing workload is required. This study aims to examine the difference between order‐based and clinically perceived nursing workloads and to quantify factors that contribute to a higher clinically perceived workload. DesignA retrospective cohort study was used on an observational dataset. MethodsWe combined patient flow, nurse staffing and assignment, and workload intensity data and used multivariate linear regression to analyze how various shift, patient, and nurse‐level factors, beyond order‐based workload, affect nurses' clinically perceived workload. ResultsAmong 53% of our samples, the clinically perceived workload is higher than the order‐based workload. Factors associated with a higher clinically perceived workload include weekend or night shifts, shifts with a higher census, patients within the first 24 h of admission, and male patients. ConclusionsThe order‐based workload measures tended to underestimate nurses' clinically perceived workload. We identified and quantified factors that contribute to a higher clinically perceived workload, discussed the potential mechanisms as to how these factors affect the clinically perceived workload, and proposed targeted interventions to better manage nursing workload. Clinical RelevanceBy identifying factors associated with a high clinically perceived workload, the nurse manager can provide appropriate interventions to lighten nursing workload, which may further reduce the risk of nurse burnout and shortage.  more » « less
Award ID(s):
1944209
PAR ID:
10574550
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Nursing Scholarship
Volume:
56
Issue:
5
ISSN:
1527-6546
Page Range / eLocation ID:
687 to 693
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background According to the US Bureau of Labor Statistics, nurses will be the largest labor pool in the United States by 2022, and more than 1.1 million nursing positions have to be filled by then in order to avoid a nursing shortage. In addition, the incidence rate of musculoskeletal disorders in nurses is above average in comparison with other occupations. Robot-assisted health care has the potential to alleviate the nursing shortage by automating mundane and routine nursing tasks. Furthermore, robots in health care environments may assist with safe patient mobility and handling and may thereby reduce the likelihood of musculoskeletal disorders. Objective This pilot study investigates the perceived ease of use and perceived usefulness (acceptability) of a customized service robot as determined by nursing students (as proxies for nursing staff in health care environments). This service robot, referred to as the Adaptive Robotic Nurse Assistant (ARNA), was developed to enhance the productivity of nurses through cooperation during physical tasks (eg, patient walking, item fetching, object delivery) as well as nonphysical tasks (eg, patient observation and feedback). This pilot study evaluated the acceptability of ARNA to provide ambulatory assistance to patients. Methods We conducted a trial with 24 participants to collect data and address the following research question: Is the use of ARNA as an ambulatory assistive device for patients acceptable to nurses? The experiments were conducted in a simulated hospital environment. Nursing students (as proxies for nursing staff) were grouped in dyads, with one participant serving as a nurse and the other acting as a patient. Two questionnaires were developed and administrated to the participants based on the Technology Acceptance Model with respect to the two subscales of perceived usefulness and perceived ease of use metrics. In order to evaluate the internal consistency/reliability of the questionnaires, we calculated Cronbach alpha coefficients. Furthermore, statistical analyses were conducted to evaluate the relation of each variable in the questionnaires with the overall perceived usefulness and perceived ease of use metrics. Results Both Cronbach alpha values were acceptably high (.93 and .82 for perceived usefulness and perceived ease of use questionnaires, respectively), indicating high internal consistency of the questionnaires. The correlation between the variables and the overall perceived usefulness and perceived ease of use metrics was moderate. The average perceived usefulness and perceived ease of use metrics among the participants were 4.13 and 5.42, respectively, out of possible score of 7, indicating a higher-than-average acceptability of this service robot. Conclusions The results served to identify factors that could affect nurses’ acceptance of ARNA and aspects needing improvement (eg, flexibility, ease of operation, and autonomy level). 
    more » « less
  2. An ongoing nurse labor shortage has the potential to impact patient care well-being in the entire healthcare system. Moreover, more complex and sophisticated nursing care is required today for patients in hospitals forcing hospital-based nurses to carry out frequent training and assessment procedures, both to onboard new nurses and to validate skills of existing staff that guarantees best practices and safety. In this paper, we recognize an opportunity for the development and integration of intelligent robot tutoring technology into nursing education to tackle the growing challenges of nurse deficit. To this end, we identify specific research problems in the area of human-robot interaction that will need to be addressed to enable robot tutors for nurse training. 
    more » « less
  3. Clinically, nurses must rapidly identify deteriorating patients and escalate patient care to adverse events. Novices, however, can easily succumb to cognitive overload. Augmented-reality (AR) devices, such as the Microsoft HoloLens 2, may help nurses attend to task-relevant information more effectively. The aim of this pilot study was to assess experienced nurses’ perceptions on the usability of AR. Practicing nurses were recruited for this study. Following a brief tutorial, demonstration and hands-on use of the HoloLens, nurses completed the system-usability scale (SUS) to rate usability. Additionally, interviews were conducted after the simulated use session. Experienced nurses (n=11) rated the usability of AR as 62.5±7.8. Themes that emerged from our open-ended interviews included the need for AR in nursing education and the potential benefit of a patient care checklist. Use of AR to support nurse decision making may reduce cognitive workload and focus attention on critical areas to recognize patient deterioration. 
    more » « less
  4. Fernández-Alcántara, Manuel (Ed.)
    Background Nurse identification of patient deterioration is critical, particularly during the COVID-19 pandemic, as patients can deteriorate quickly. While the literature has shown that nurses rely on intuition to make decisions, there is limited information on what sources of data experienced nurses utilize to inform their intuition. The objectives of this study were to identify sources of data that inform nurse decision-making related to recognition of deteriorating patients, and explore how COVID-19 has impacted nurse decision-making. Methods In this qualitative study, experienced nurses voluntarily participated in focused interviews. During focused interviews, expert nurses were asked to share descriptions of memorable patient encounters, and questions were posed to facilitate reflections on thoughts and actions that hindered or helped their decision-making. They were also asked to consider the impact of COVID-19 on nursing and decision-making. Interviews were transcribed verbatim, study team members reviewed transcripts and coded responses, and organized key findings into themes. Results Several themes related to decision-making were identified by the research team, including: identifying patient care needs, workload management, and reflecting on missed care opportunities to inform learning. Participants (n = 10) also indicated that COVID-19 presented a number of unique barriers to nurse decision-making. Conclusions Findings from this study indicate that experienced nurses utilize several sources of information to inform their intuition. It is apparent that the demands on nurses in response to pandemics are heightened. Decision-making themes drawn from participants’ experiences can to assist nurse educators for training nursing students on decision-making for deteriorating patients and how to manage the potential barriers (e.g., resource constraints, lack of family) associated with caring for patients during these challenging times prior to encountering these issues in the clinical environment. Nurse practice can utilize these findings to increase awareness among experienced nurses on recognizing how pandemic situations can impact to their decision-making capability. 
    more » « less
  5. Background:Technology has the potential to prevent patient falls in healthcare settings and to reduce work-related injuries among healthcare providers. However, the usefulness and acceptability of each technology requires careful evaluation. Framed by the Technology Acceptance Model (TAM) and using the Adaptive Robotic Nursing Assistant (ARNA) to assist with patient ambulation, the present study examined the perceived usefulness of robots in patients’ fall prevention with implications for preventing associated work-related injuries among healthcare providers. Methods:Employing an experimental design, subjects were undergraduate nursing students ( N = 38) and one external subject (not a nursing student) who played the role of the patient. Procedures included subjects ambulating a simulated patient in three ways: (a) following the practice of a nurse assisting a patient to walk with the patient wearing a gait belt; (b) an ARNA-assisted process with the gait belt attached to ARNA; (c) an ARNA-assisted process with a subject walking a patient wearing a harness that is attached to ARNA. Block randomization was used with the following experimental scenarios: Gait Belt (human with a gait belt), “ARNA + Gait Belt” (a robot with a gait belt), and “ARNA + Harness” (a robot with a harness). Descriptive statistics and a multiple regression model were used to analyze the data and compare the outcome described as the Perceived Usefulness (PU) of a robot for patient walking versus a human “nurse assistant” without a robot. The independent variables included the experimental conditions of “Gait Belt,” “ARNA + Gait Belt,” and “ARNA + Harness,” the subject’s age, race, and previous videogame playing experience. Findings:Results indicated that PU was significantly higher in the Gait Belt + ARNA and Harness + ARNA conditions than in the Gait Belt condition ( p-value <.01 for both variables). In examining potential influencing factors, the effects of race (White, African American, and Asian), age, and previous video-playing experience were not statistically significant ( p-value >.05). Discussion:Results demonstrated that using robot technology to assist in walking patients was perceived by subjects as more useful in preventing falls than the gait belt. Patient fall prevention also has implications for preventing associated work-related injuries among healthcare providers. Implications:Understanding the effects of a subject’s perceptions can guide further development of assistive robots in patient care. Robotic engineers and interdisciplinary teams can design robots to accommodate worker characteristics and individual differences to improve worker safety and reduce work injuries. 
    more » « less