skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1944209

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract IntroductionIn order to be positioned to address the increasing strain of burnout and worsening nurse shortage, a better understanding of factors that contribute to nursing workload is required. This study aims to examine the difference between order‐based and clinically perceived nursing workloads and to quantify factors that contribute to a higher clinically perceived workload. DesignA retrospective cohort study was used on an observational dataset. MethodsWe combined patient flow, nurse staffing and assignment, and workload intensity data and used multivariate linear regression to analyze how various shift, patient, and nurse‐level factors, beyond order‐based workload, affect nurses' clinically perceived workload. ResultsAmong 53% of our samples, the clinically perceived workload is higher than the order‐based workload. Factors associated with a higher clinically perceived workload include weekend or night shifts, shifts with a higher census, patients within the first 24 h of admission, and male patients. ConclusionsThe order‐based workload measures tended to underestimate nurses' clinically perceived workload. We identified and quantified factors that contribute to a higher clinically perceived workload, discussed the potential mechanisms as to how these factors affect the clinically perceived workload, and proposed targeted interventions to better manage nursing workload. Clinical RelevanceBy identifying factors associated with a high clinically perceived workload, the nurse manager can provide appropriate interventions to lighten nursing workload, which may further reduce the risk of nurse burnout and shortage. 
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  2. Queue scheduling, in which limited resources must be allocated to incoming customers, has numerous applications in service operations management. With increasing data availability and advances in predictive models, personalized scheduling—which leverages individual information about underlying stochastic processes beyond just probability distributions—has gained significant attention. A new study reveals that, even with noisy service-time predictions, the (predicted) shortest-job-first (SJF) policy can effectively optimize performance in many-server systems with inpatient customers. The study also characterizes the impact of prediction errors on the policy’s effectiveness. Additionally, the study shows that a two-class priority rule, in which customers with shorter predicted service times (below a carefully designed threshold) are prioritized, can asymptotically match the performance of SJF, offering a simpler policy for implementation in practice. 
    more » « less
    Free, publicly-accessible full text available December 19, 2025
  3. Determining emergency department (ED) nurse staffing decisions to balance quality of service and staffing costs can be extremely challenging, especially when there is a high level of uncertainty in patient demand. Increasing data availability and continuing advancements in predictive analytics provide an opportunity to mitigate demand uncertainty by using demand forecasts. In this work, we study a two-stage prediction-driven staffing framework where the prediction models are integrated with the base (made weeks in advance) and surge (made nearly real-time) nurse staffing decisions in the ED. We quantify the benefit of having the ability to use the more expensive surge staffing and identify the importance of balancing demand uncertainty versus system stochasticity. We also propose a near-optimal two-stage staffing policy that is straightforward to interpret and implement. Last, we develop a unified framework that combines parameter estimation, real-time demand forecasts, and nurse staffing in the ED. High-fidelity simulation experiments for the ED demonstrate that the proposed framework has the potential to reduce annual staffing costs by 10%–16% ($2 M–$3 M) while guaranteeing timely access to care. This paper was accepted by David Simchi-Levi, healthcare management. Funding: J. Dong was partially supported by the Division of Civil, Mechanical and Manufacturing Innovation [Grant CMMI-1944209]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2021.02781 . 
    more » « less
    Free, publicly-accessible full text available May 24, 2025
  4. When having access to demand forecasts, a crucial question is how to effectively use this information to make better resource allocation decisions, especially during demand surges like the COVID-19 pandemic. Despite the emergence of various advanced prediction models for hospital resources, there has been a lack of prescriptive solutions for hospital managers seeking concrete decision support, for example, guidance on whether to allocate beds from other specialties to meet the surge demand from COVID-19 patients by postponing elective surgeries. In their paper “Optimal Routing under Demand Surge: the Value of Future Arrival Rate,” the authors present a systematic framework to incorporate future demand into routing decisions in parallel server systems with partial flexibility and quantify the benefits of doing so. They propose a simple and interpretable two-stage index-based policy that explicitly incorporates demand forecasts into real-time routing decisions. Their analytical and numerical results demonstrate the policy’s effectiveness, even in the presence of large prediction errors. 
    more » « less
  5. Service systems are typically limited resource environments where scarce capacity is reserved for the most urgent customers. However, there has been a growing interest in the use of proactive service when a less urgent customer may become urgent while waiting. On one hand, providing service for customers when they are less urgent could mean that fewer resources are needed to fulfill their service requirement. On the other hand, using limited capacity for customers who may never need the service in the future takes the capacity away from other more urgent customers who need it now. To understand this tension, we propose a multiserver queueing model with two customer classes: moderate and urgent. We allow customers to transition classes while waiting. In this setting, we characterize how moderate and urgent customers should be prioritized for service when proactive service for moderate customers is an option. We identify an index, the modified [Formula: see text]-index, which plays an important role in determining the optimal scheduling policy. This index lends itself to an intuitive interpretation of how to balance holding costs, service times, abandonments, and transitions between customer classes. This paper was accepted by David Simchi-Levi, stochastic models and simulation. 
    more » « less
  6. The shortest-remaining-processing-time (SRPT) scheduling policy has been extensively studied, for more than 50 years, in single-server queues with infinitely patient jobs. Yet, much less is known about its performance in multiserver queues. In this paper, we present the first theoretical analysis of SRPT in multiserver queues with abandonment. In particular, we consider the M/GI/s+GI queue and demonstrate that, in the many-sever overloaded regime, performance in the SRPT queue is equivalent, asymptotically in steady state, to a preemptive two-class priority queue where customers with short service times (below a threshold) are served without wait, and customers with long service times (above a threshold) eventually abandon without service. We prove that the SRPT discipline maximizes, asymptotically, the system throughput, among all scheduling disciplines. We also compare the performance of the SRPT policy to blind policies and study the effects of the patience-time and service-time distributions. This paper was accepted by Baris Ata, stochastic models & simulation. 
    more » « less