skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on May 24, 2025

Title: Prediction-Driven Surge Planning with Application to Emergency Department Nurse Staffing
Determining emergency department (ED) nurse staffing decisions to balance quality of service and staffing costs can be extremely challenging, especially when there is a high level of uncertainty in patient demand. Increasing data availability and continuing advancements in predictive analytics provide an opportunity to mitigate demand uncertainty by using demand forecasts. In this work, we study a two-stage prediction-driven staffing framework where the prediction models are integrated with the base (made weeks in advance) and surge (made nearly real-time) nurse staffing decisions in the ED. We quantify the benefit of having the ability to use the more expensive surge staffing and identify the importance of balancing demand uncertainty versus system stochasticity. We also propose a near-optimal two-stage staffing policy that is straightforward to interpret and implement. Last, we develop a unified framework that combines parameter estimation, real-time demand forecasts, and nurse staffing in the ED. High-fidelity simulation experiments for the ED demonstrate that the proposed framework has the potential to reduce annual staffing costs by 10%–16% ($2 M–$3 M) while guaranteeing timely access to care. This paper was accepted by David Simchi-Levi, healthcare management. Funding: J. Dong was partially supported by the Division of Civil, Mechanical and Manufacturing Innovation [Grant CMMI-1944209]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2021.02781 .  more » « less
Award ID(s):
1944209
PAR ID:
10574554
Author(s) / Creator(s):
; ;
Publisher / Repository:
INFORMS
Date Published:
Journal Name:
Management Science
ISSN:
0025-1909
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When having access to demand forecasts, a crucial question is how to effectively use this information to make better resource allocation decisions, especially during demand surges like the COVID-19 pandemic. Despite the emergence of various advanced prediction models for hospital resources, there has been a lack of prescriptive solutions for hospital managers seeking concrete decision support, for example, guidance on whether to allocate beds from other specialties to meet the surge demand from COVID-19 patients by postponing elective surgeries. In their paper “Optimal Routing under Demand Surge: the Value of Future Arrival Rate,” the authors present a systematic framework to incorporate future demand into routing decisions in parallel server systems with partial flexibility and quantify the benefits of doing so. They propose a simple and interpretable two-stage index-based policy that explicitly incorporates demand forecasts into real-time routing decisions. Their analytical and numerical results demonstrate the policy’s effectiveness, even in the presence of large prediction errors. 
    more » « less
  2. Nursing homes (NHs) are critical facilities for caring frail older adults with around-the-clock formal care and personal assistance. To ensure quality of care for NH residents, an adequate staffing level is of great importance. Current NH staffing practice is mainly based on experience and regulation. The objective of this paper is to investigate the viability of experience-based and regulation-based strategies, as well as alternative staffing strategies to meet the heterogeneous service demand of NH residents at reduced labor cost under various scenarios of census compositions. We propose a predictive analytics integrated computer simulation model to characterize the heterogeneous service demand of NH residents, and further evaluate and identify promising staffing strategies at the facility level. Specifically, we propose a predictive model based on latent survival analysis to characterize diverse length-of-stay (LOS) with multiple discharge dispositions among NH residents. Further, we develop a simulation model with the incorporation of predictive analytics and domain knowledge to characterize the heterogeneous service demand of NH residents on different types of caregivers over time. Based on the simulation model, we develop a graphical user interface for the simulator to evaluate different staffing strategies at the facility level and inform NH administrators about promising strategies. We use real NH data to validate the proposed model and demonstrate its effectiveness. The proposed predictive LOS model considering multiple discharge dispositions exhibits superior prediction performance and offers better staffing decisions at reduced costs than those without the consideration. With the improved modeling fidelity via integrating predictive analytics with computer simulation, the proposed model is flexible to evaluate various staffing strategies using total labor cost as a performance metric, and can identify promising staffing strategies to meet the service demand of NH residents. Promising staffing strategies with the suggested staff-to-resident (SR) ratio can significantly reduce the total labor cost of multiple types of caregivers, as compared to the benchmark strategies, such as the SR ratios based on industrial practice or minimum requirement of state regulation. Moreover, we construct multiple scenarios of different census compositions of NH residents to demonstrate the capability of the proposed model. Our proposed model can facilitate NH staffing decision making to meet the heterogeneous service demand of NH residents at reduced labor costs. 
    more » « less
  3. Increasing e-commerce activity, competition for shorter delivery times, and innovations in transportation technologies have pushed the industry toward instant delivery logistics. This paper studies a facility location and online demand allocation problem applicable to a logistics company expanding to offer instant delivery service using unmanned aerial vehicles or drones. The problem is decomposed into two stages. During the planning stage, the facilities are located, and product and battery capacity are allocated. During the operational stage, customers place orders dynamically and real-time demand allocation decisions are made. The paper explores a multi-armed bandit framework for maximizing the cumulative reward realized by the logistics company subject to various capacity constraints and compares it with other strategies. The multi-armed bandit framework provides about 7% more rewards than the second-best strategy when tested on standard test instances. A case study based in Portland Metro Area showed that multi-armed bandits can outperform the second-best strategy by more than 20%. 
    more » « less
  4. Abstract Freshwater ecosystems are experiencing greater variability due to human activities, necessitating new tools to anticipate future water quality. In response, we developed and deployed a real‐time iterative water temperature forecasting system (FLARE—Forecasting Lake And Reservoir Ecosystems). FLARE is composed of water temperature and meteorology sensors that wirelessly stream data, a data assimilation algorithm that uses sensor observations to update predictions from a hydrodynamic model and calibrate model parameters, and an ensemble‐based forecasting algorithm to generate forecasts that include uncertainty. Importantly, FLARE quantifies the contribution of different sources of uncertainty (driver data, initial conditions, model process, and parameters) to each daily forecast of water temperature at multiple depths. We applied FLARE to Falling Creek Reservoir (Vinton, Virginia, USA), a drinking water supply, during a 475‐day period encompassing stratified and mixed thermal conditions. Aggregated across this period, root mean square error (RMSE) of daily forecasted water temperatures was 1.13°C at the reservoir's near‐surface (1.0 m) for 7‐day ahead forecasts and 1.62°C for 16‐day ahead forecasts. The RMSE of forecasted water temperatures at the near‐sediments (8.0 m) was 0.87°C for 7‐day forecasts and 1.20°C for 16‐day forecasts. FLARE successfully predicted the onset of fall turnover 4–14 days in advance in two sequential years. Uncertainty partitioning identified meteorology driver data as the dominant source of uncertainty in forecasts for most depths and thermal conditions, except for the near‐sediments in summer, when model process uncertainty dominated. Overall, FLARE provides an open‐source system for lake and reservoir water quality forecasting to improve real‐time management. 
    more » « less
  5. This work considers the incorporation of renewable ammonia manufacturing sites into existing ammonia supply chain networks while accounting for ammonia price uncertainty from existing producers. We propose a two-stage stochastic programming approach to determine the optimal investment decisions such that the ammonia demand is satisfied and the net present cost is minimized. We apply the proposed approach to a case study considering deploying in-state renewable ammonia manufacturing in Minnesota’s supply chain network. We find that accounting for price uncertainty leads to supply chains with more ammonia demand met via renewable production and thus lower costs from importing ammonia from existing producers. These results show that the in-state renewable production of ammonia can act as a hedge against the volatility of the conventional ammonia market. 
    more » « less