Whether to evacuate a nursing home (NH) or shelter in place in response to the approaching hurricane is one of the most complex and difficult decisions encountered by nursing home administrators. A variety of factors may affect the evacuation decision, including storm and environmental conditions, nursing home characteristics, and the dwelling residents’ health conditions. Successful prediction of evacuation decision is essential to proactively prepare and manage resources to meet the surge in nursing home evacuation demands. In current nursing home emergency preparedness literature, there is a lack of analytical models and studies for nursing home evacuation demand prediction. In this paper, we propose a predictive analytics framework by applying machine learning techniques, integrated with domain knowledge in NH evacuation research, to extract, identify and quantify the effects of relevant factors on NH evacuation from heterogeneous data sources. In particular, storm features are extracted from Geographic Information System (GIS) data to strengthen the prediction accuracy. To further illustrate the proposed work and demonstrate its practical validity, a real-world case study is given to investigate nursing home evacuation in response to recent Hurricane Irma in Florida. The prediction performance among different predictive models are also compared comprehensively.
more »
« less
A latent survival model integrated computer simulation-based evaluation for nursing home staffing
Nursing homes (NHs) are critical facilities for caring frail older adults with around-the-clock formal care and personal assistance. To ensure quality of care for NH residents, an adequate staffing level is of great importance. Current NH staffing practice is mainly based on experience and regulation. The objective of this paper is to investigate the viability of experience-based and regulation-based strategies, as well as alternative staffing strategies to meet the heterogeneous service demand of NH residents at reduced labor cost under various scenarios of census compositions. We propose a predictive analytics integrated computer simulation model to characterize the heterogeneous service demand of NH residents, and further evaluate and identify promising staffing strategies at the facility level. Specifically, we propose a predictive model based on latent survival analysis to characterize diverse length-of-stay (LOS) with multiple discharge dispositions among NH residents. Further, we develop a simulation model with the incorporation of predictive analytics and domain knowledge to characterize the heterogeneous service demand of NH residents on different types of caregivers over time. Based on the simulation model, we develop a graphical user interface for the simulator to evaluate different staffing strategies at the facility level and inform NH administrators about promising strategies. We use real NH data to validate the proposed model and demonstrate its effectiveness. The proposed predictive LOS model considering multiple discharge dispositions exhibits superior prediction performance and offers better staffing decisions at reduced costs than those without the consideration. With the improved modeling fidelity via integrating predictive analytics with computer simulation, the proposed model is flexible to evaluate various staffing strategies using total labor cost as a performance metric, and can identify promising staffing strategies to meet the service demand of NH residents. Promising staffing strategies with the suggested staff-to-resident (SR) ratio can significantly reduce the total labor cost of multiple types of caregivers, as compared to the benchmark strategies, such as the SR ratios based on industrial practice or minimum requirement of state regulation. Moreover, we construct multiple scenarios of different census compositions of NH residents to demonstrate the capability of the proposed model. Our proposed model can facilitate NH staffing decision making to meet the heterogeneous service demand of NH residents at reduced labor costs.
more »
« less
- Award ID(s):
- 1825725
- PAR ID:
- 10526084
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Computers & Industrial Engineering
- Volume:
- 177
- Issue:
- C
- ISSN:
- 0360-8352
- Page Range / eLocation ID:
- 109074
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Determining emergency department (ED) nurse staffing decisions to balance quality of service and staffing costs can be extremely challenging, especially when there is a high level of uncertainty in patient demand. Increasing data availability and continuing advancements in predictive analytics provide an opportunity to mitigate demand uncertainty by using demand forecasts. In this work, we study a two-stage prediction-driven staffing framework where the prediction models are integrated with the base (made weeks in advance) and surge (made nearly real-time) nurse staffing decisions in the ED. We quantify the benefit of having the ability to use the more expensive surge staffing and identify the importance of balancing demand uncertainty versus system stochasticity. We also propose a near-optimal two-stage staffing policy that is straightforward to interpret and implement. Last, we develop a unified framework that combines parameter estimation, real-time demand forecasts, and nurse staffing in the ED. High-fidelity simulation experiments for the ED demonstrate that the proposed framework has the potential to reduce annual staffing costs by 10%–16% ($2 M–$3 M) while guaranteeing timely access to care. This paper was accepted by David Simchi-Levi, healthcare management. Funding: J. Dong was partially supported by the Division of Civil, Mechanical and Manufacturing Innovation [Grant CMMI-1944209]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2021.02781 .more » « less
-
In this paper, we study a nursing home staff schedule optimization problem under resident demand uncertainty. We formulate a two-stage stochastic binary program accordingly, with objective to minimize the total labor cost (linearly related to work time) incurred by both regular registered nurses (RRNs) and part-time nurses (PTNs). As a significant constraint, we balance RRNs’ total amount of work time with residents’ total service need for every considered shift. Besides, we restrict feasible shift schedules based on common scheduling practice. We conduct a series of computational experiments to validate the proposed model. We discuss our optimal solutions under different compositions of residents in terms of their disabilities. In addition, we compare the total labor costs and an RRN scheduling flexibility index with the given optimal solution under different combinations of RRNs and PTNs. Our analysis offers an operational approach to set the minimum number of nurses on flexible shift schedules to cover uncertain the service needs while maintaining a minimum labor cost.more » « less
-
Abstract The murder of George Floyd triggered a broad social response and noticeable shift in public opinion of policing. Since policing is dependent upon public cooperation, a question is whether the shift in opinion had an effect on police calls-for-service. Data from Los Angeles and New York City are evaluated using a regression discontinuity design. Violent crime, property crime, and quality-of-life disorder calls are analyzed to address differences in reporting norms. The role of racial–ethnic composition of local areas is assessed by examining census tracts where the majority of the residential population is Asian, Black, Hispanic, or White. Following the murder of George Floyd, in New York City violent crime, property crime, and quality-of-life calls all increased significantly. In Los Angeles, quality-of-life calls for service decreased significantly. The increase in violent crime calls observed in New York was greatest in areas where the majority of residents are Black, whereas the increase in property crime calls was the greatest in areas where a majority of residents are White. The decrease in quality-of-life calls observed in Los Angeles was in areas where the majority of residents are White. In both cases, the effect was relatively short-lived.more » « less
-
null (Ed.)Abstract. This paper investigates the spatial differences in fresh vegetable spending in Guilford County, North Carolina. We create a geo-coded spatial-temporal database for both human factors and natural factors to understand why food deserts have become a serious issue in a county with many farming activities. We find that residents living in food deserts do not buy enough fresh vegetables compared with their counterparts, even when they are shopping at full-service grocery stores. Social-economic factors are most sensitive and are important determinants of fresh food demand. Using an agent-based toy model, we find that fresh vegetable demand in each census tract in Guilford County varies to a large extent. The results suggest that the formation of food deserts may root from the demand side.more » « less
An official website of the United States government

