skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Broadband nonreciprocal thermal emissivity and absorptivity
A body that violates Kirchhoff’s law of thermal radiation exhibits an inequality in its spectral directional absorptivity and emissivity. Achieving such an inequality is of fundamental interest as well as a prerequisite for achieving thermodynamic limits in photonic energy conversion1and radiative cooling2. Thus far, inequalities in the spectral directional emissivity and absorptivity have been limited to narrow spectral resonances3, or wavelengths well beyond the infrared regime4. Bridging the gap from basic demonstrations to practical applications requires control over a broad spectral range of the unequal spectral directional absorptivity and emissivity. In this work, we demonstrate broadband nonreciprocal thermal emissivity and absorptivity by measuring the thermal emissivity and absorptivity of gradient epsilon-near-zero InAs layers of subwavelength thicknesses (50 nm and 150 nm) with an external magnetic field. The effect occurs in a spectral range (12.5–16 μm) that overlaps with the infrared transparency window and is observed at moderate (1 T) magnetic fields.  more » « less
Award ID(s):
2146577
PAR ID:
10574647
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Light: Science & Applications
Volume:
13
Issue:
1
ISSN:
2047-7538
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Kirchhoff’s law of thermal radiation stating the equivalence of emissivity and absorptivity at the same wavelength, angle, and polarization, has completely constrained emission and absorption processes. Achieving strong nonreciprocal emission points to fundamental advances for applications such as energy harvesting, heat transfer, and sensing, but strong nonreciprocal thermal emission has not been experimentally realized. Here, we observe strong nonreciprocal thermal emission using a custom-designed angle-resolved magnetic thermal emission spectroscopy and an epitaxially-transferred gradient-doped metamaterial. We show that under magnetic field, the metamaterial strongly breaks the Kirchhoff’s law, with a difference between emissivity and absorptivity at the same wavelength and angle reaching as high as 0.43. Significant nonreciprocal emission persists over broad spectral and angular ranges. The demonstration of strong nonreciprocal thermal emission and the approach can be useful for systematic exploration of nonreciprocal thermal photonics for thermal management, infrared camouflage, and energy conversion. 
    more » « less
  2. Abstract Controlling both the spectral bandwidth and directionality of emitted thermal radiation is a fundamental challenge in contemporary photonics. Recent work has shown that materials with a spatial gradient in the frequency range of their epsilon‐near‐zero (ENZ) response can support broad spectrum directionality in their emissivity, enabling high total radiance to specific angles of incidence. However, this capability is limited spectrally and directionally by the availability of materials with phonon‐polariton resonances over long‐wave infrared wavelengths. Here, an approach is designed and experimentally demonstrated using doped III–V semiconductors that can simultaneously tailor spectral peak, bandwidth, and directionality of infrared emissivity. InAs‐based gradient ENZ photonic structures that exhibit broadband directional emission with varying spectral bandwidths and directional ranges as a function of their doping concentration profile and thickness are epitaxially grown and characterized. Due to its easy‐to‐fabricate geometry, it is believed that this approach provides a versatile photonic platform to dynamically control broadband spectral and directional emissivity for a range of emerging applications in heat transfer and infrared sensing. 
    more » « less
  3. null (Ed.)
    Abstract Spectrally selective solar absorbers (SSAs), which harvest heat from sunlight, are the key to concentrated solar thermal systems. An ideal SSA must have an absorptivity of unity in the solar irradiance wavelength region (0.3–2.5  $$\upmu $$ μ m), and its infrared thermal emissivity must be zero to depress spontaneous blackbody irradiation (2.5–25  $$\upmu $$ μ m). Current SSA designs which utilize photonic crystals, metamaterials, or cermets are either cost-inefficient due to the complexity of the required nanofabrication methods, or have limited applicability due to poor thermal stability at high temperatures. We conceptually present blackbody-cavity solar absorber designs with nearly ideal spectrally selective properties, capable of being manufactured at scale. The theoretical analyses show that the unity solar absorptivity of the blackbody cavity and nearly zero infrared emissivity of the SSA’s outer surface allow for a stagnation temperature of 880  $$^\circ $$ ∘ C under 10 suns. The performance surpasses state-of-the-art SSAs manufactured using nanofabrication methods. This design relies only on traditional fabrication methods, such as machining, casting, and polishing. This makes it suitable for large-scale industrial applications, and the “blackbody cavity” feature enables easy integration with existing concentrated solar thermal systems using the parabolic reflector and Fresnel lens as optical concentrators. 
    more » « less
  4. Recent advancements in nonreciprocal thermal emitters challenge the conventional Kirchhoff's law, which states that emissivity and absorptivity should be equal for a given direction, frequency, and polarization. These emitters can break Kirchhoff's law and enable unprecedented thermal photon control capabilities. However, current studies mainly focus on increasing the magnitude of the contrast between emissivity and absorptivity, with little attention paid to how the sign or bandwidth of the contrast may be controlled. In this work, we show such control ability can be achieved by coupling resonances that can provide opposite contrasts between emissivity and absorptivity. 
    more » « less
  5. The increasing demand for optical technologies with dynamic spectral control has driven interest in chromogenic materials, particularly for applications in tunable infrared metasurfaces. Phase-change materials such as vanadium dioxide and germanium–antimony–tellurium, for instance, have been widely used in the infrared regime. However, their reliance on thermal and electrical tuning introduces challenges such as high power consumption, limited emissivity tuning, and slow modulation speeds. Photochromic materials may offer an alternative approach to dynamic infrared metasurfaces, potentially overcoming these limitations through rapid, light-induced changes in their optical properties. This manuscript explores the potential of thiazolothiazole-embedded polymers, known for their reversible photochromic transitions and strong infrared absorption changes, for use in tunable infrared metasurfaces. The material exhibits low absorption and a strong photochromic contrast in the spectral range from 1500 cm−1 to 1700 cm−1, making it suitable for dynamic infrared light control. This manuscript reports on infrared imaging experiments demonstrating the photochromic contrast in thiazolothiazole-embedded polymer, and thereby provides compelling evidence for its potential applications in dynamic infrared metasurfaces. 
    more » « less