skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Challenges and Future Directions in Quantifying Terrestrial Evapotranspiration
Abstract Terrestrial evapotranspiration is the second‐largest component of the land water cycle, linking the water, energy, and carbon cycles and influencing the productivity and health of ecosystems. The dynamics of ET across a spectrum of spatiotemporal scales and their controls remain an active focus of research across different science disciplines. Here, we provide an overview of the current state of ET science across in situ measurements, partitioning of ET, and remote sensing, and discuss how different approaches complement one another based on their advantages and shortcomings. We aim to facilitate collaboration among a cross‐disciplinary group of ET scientists to overcome the challenges identified in this paper and ultimately advance our integrated understanding of ET.  more » « less
Award ID(s):
1655499
PAR ID:
10574753
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
60
Issue:
10
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Water quality in lakes is an emergent property of complex biotic and abiotic processes that differ across spatial and temporal scales. Water quality is also a determinant of ecosystem services that lakes provide and is thus of great interest to ecologists. Machine learning and other computer science techniques are increasingly being used to predict water quality dynamics as well as to gain a greater understanding of water quality patterns and controls. To benefit the sciences of both ecology and computer science, we have created a benchmark dataset of lake water quality time series and vertical profiles. LakeBeD-US contains over 500 million unique observations of lake water quality collected by multiple long-term monitoring programs across 17 water quality variables from 21 lakes in the United States. There are two published versions of LakeBeD-US: the “Ecology Edition” published in the Environmental Data Initiative repository (https://doi.org/10.6073/pasta/c56a204a65483790f6277de4896d7140, McAfee et al., 2024) and the “Computer Science Edition” published in the Hugging Face repository (https://doi.org/10.57967/hf/3771, Pradhan et al., 2024). Each edition is formatted in a manner conducive to inquiries and analyses specific to each domain. For ecologists, LakeBeD-US: Ecology Edition provides an opportunity to study the spatial and temporal dynamics of several lakes with varying water quality, ecosystem, and landscape characteristics. For computer scientists, LakeBeD-US: Computer Science Edition acts as a benchmark dataset that enables the advancement of machine learning for water quality prediction. 
    more » « less
  2. Abstract Satellite‐based evapotranspiration (ET) products such as OpenET and GLEAM are widely used for drought monitoring and ecosystem‐climate studies. However, their ability to accurately capture interannual variability (IAV), a key requirement for such applications, remains under‐evaluated. Here, we assessed IAV in OpenET and GLEAM using an independent water balance approach that combined precipitation, discharge, and GRACE/FO total water storage anomalies across nine river basins in the western United States. Even after accounting for observational uncertainty through a Monte Carlo approach, both products systematically underestimate IAV relative to water balance‐based ET, by more than 60% on average. This result is further supported by long‐term tower measurements from AmeriFlux. We also demonstrated that ET sensitivity to climate and vegetation drivers in OpenET and GLEAM differ substantially from water balance‐based estimates. These findings reveal important limitations in satellite‐based ET products and highlight the need for improved IAV representation to support ecosystem and climate applications. 
    more » « less
  3. Summary Accounting for water limitation is key to determining vegetation sensitivity to drought. Quantifying water limitation effects on evapotranspiration (ET) is challenged by the heterogeneity of vegetation types, climate zones and vertically along the rooting zone.Here, we train deep neural networks using flux measurements to study ET responses to progressing drought conditions. We determine a water stress factor (fET) that isolates ET reductions from effects of atmospheric aridity and other covarying drivers. We regress fET against the cumulative water deficit, which reveals the control of whole‐column moisture availability.We find a variety of ET responses to water stress. Responses range from rapid declines of fET to 10% of its water‐unlimited rate at several savannah and grassland sites, to mild fET reductions in most forests, despite substantial water deficits. Most sensitive responses are found at the most arid and warm sites.A combination of regulation of stomatal and hydraulic conductance and access to belowground water reservoirs, whether in groundwater or deep soil moisture, could explain the different behaviors observed across sites. This variety of responses is not captured by a standard land surface model, likely reflecting simplifications in its representation of belowground water storage. 
    more » « less
  4. Improved water management is a growing need in areas where rice production is intensive. In the state of Arkansas and other portions of the US, new irrigation practices are being implemented to conserve water during rice cultivation. The goal of this study was to evaluate canopy water use in two commercial rice fields using different irrigation practices across three growing seasons. Canopy water use was assessed across multiple metrics, including different representations of water use efficiency (WUE) as well as their contributing terms, gross primary production (GPP) and evapotranspiration (ET). Furthermore, we validated and employed a methodology for estimating transpiration from ET using the concept of underlying water use efficiency (uWUE) that includes a sensitivity to vapor pressure deficit (VPD). Periodic drying associated with the alternate wetting and drying irrigation practice did not result in decreased GPP, ET, or transpiration (T). Our findings indicated that approximately 43 to 56 % of ET is released as T during the growing season. The uWUE method improved the relationship between GPP and ET by accounting for the limitation of VPD on GPP during the afternoon periods. 
    more » « less
  5. Abstract Despite interest in the contribution of evapotranspiration (ET) of residential turfgrass lawns to household and municipal water budgets across the United States, the spatial and temporal variability of residential lawn ET across large scales is highly uncertain. We measured instantaneous ET (ETinst) of lawns in 79 residential yards in six metropolitan areas: Baltimore, Boston, Miami, Minneapolis‐St. Paul (mesic climates), Los Angeles and Phoenix (arid climates). Each yard had one of four landscape types and management practices: traditional lawn‐dominated yards with high or low fertilizer input, yards with water‐conserving features, and yards with wildlife‐friendly features. We measured ETinstin situ during the growing season using portable chambers and identified environmental and anthropogenic factors controlling ET in residential lawns. For each household, we used ETinstto estimate daily ET of the lawn (ETdaily) and multiplied ETdailyby the lawn area to estimate the total volume of water lost through ET of the lawn (ETvol). ETdailyvaried from 0.9 ± 0.4 mm d1in mesic cities to 2.9 ± 0.7 mm d−1in arid cities. Neither ETinstnor ETdailywas significantly influenced by yard landscape types and ETinstpatterns indicated that lawns may be largely decoupled from regional rain‐driven climate patterns. ETvolranged from ∼0 L d−1to over 2,000 L d−1, proportionally increasing with lawn area. Current irrigation and lawn management practices did not necessarily result in different ETinstor ETdailyamong traditional, water‐conserving, or wildlife‐friendly yards, but smaller lawn areas in water‐conserving and wildlife‐friendly yards resulted in lower ETvol
    more » « less