skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Is flight initiation distance associated with longer-term survival in yellow-bellied marmots, Marmota flaviventer?
The distance at which animals move away from threats, flight initiation distance (FID), is often used to study antipredator behaviour and risk assessment. Variation in FID is explained by a variety of internal and external biotic and physical factors, including anthropogenic activities. Most prior studies focused on unidentified individuals, so our understanding of the fitness consequences of FID is relatively limited. We asked whether consistent individual differences in variation in flight initiation distance is associated with variation in summer survival and/or winter survival in an individually marked population of yellow- bellied marmots. We found no clear association between flight initiation distance and summer sur- vival or winter survival. This suggests that FID decisions, while demonstrably optimizing current survival, may not have longer-term fitness consequences. Our results may be explained by the relatively modest repeatability of FID or it may have emerged from our attempt to explain longer-term measures of fitness. Future studies of the fitness consequences of personality traits should pay particular attention to the time interval between measuring the individuality of a trait and examining its fitness consequences.  more » « less
Award ID(s):
1755522
PAR ID:
10574923
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier Ltd
Date Published:
Journal Name:
Animal Behaviour
Volume:
202
Issue:
C
ISSN:
0003-3472
Page Range / eLocation ID:
21 to 28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zhi-Yun (Ed.)
    Abstract Escape theory has been exceptionally successful in conceptualizing and accurately predicting effects of numerous factors that affect predation risk and explaining variation in flight initiation distance (FID; predator–prey distance when escape begins). Less explored is the relative orientation of an approaching predator, prey, and its eventual refuge. The relationship between an approaching threat and its refuge can be expressed as an angle we call the “interpath angle” or “Φ,” which describes the angle between the paths of predator and prey to the prey’s refuge and thus expresses the degree to which prey must run toward an approaching predator. In general, we might expect that prey would escape at greater distances if they must flee toward a predator to reach its burrow. The “race for life” model makes formal predictions about how Φ should affect FID. We evaluated the model by studying escape decisions in yellow-bellied marmots Marmota flaviventer, a species which flees to burrows. We found support for some of the model’s predictions, yet the relationship between Φ and FID was less clear. Marmots may not assess Φ in a continuous fashion; but we found that binning angle into 4 45° bins explained a similar amount of variation as models that analyzed angle continuously. Future studies of Φ, especially those that focus on how different species perceive relative orientation, will likely enhance our understanding of its importance in flight decisions. 
    more » « less
  2. Abstract Climate change and its resulting effects on seasonality are known to alter a variety of animal behaviors including those related to foraging, phenology, and migration. Although many studies focus on the impacts of phenological changes on physiology or fitness enhancing behaviors, fewer have investigated the relationship between variation in weather and phenology on risk assessment. Fleeing from predators is an economic decision that incurs costs and benefits. As environmental conditions change, animals may face additional stressors that affect their decision to flee and influence their ability to effectively assess risk. Flight initiation distance (FID)—the distance at which animals move away from threats—is often used to study risk assessment. FID varies due to both internal and external biotic and physical factors as well as anthropogenic activities. We asked whether variation in weather and phenology is associated with risk-taking in a population of yellow-bellied marmots (Marmota flaviventer). As the air temperature increased marmots tolerated closer approaches, suggesting that they either perceived less risk or that their response to a threat was thermally compromised. The effect of temperature was relatively small and was largely dependent upon having a larger range in the full data set that permitted us to detect it. We found no effects of either the date that snow disappeared or July precipitation on marmot FID. As global temperatures continue to rise, rainfall varies more and drought becomes more common, understanding climate-related changes in how animals assess risk should be used to inform population viability models. 
    more » « less
  3. Flight initiation distance (FID), the distance at which an organism flees from an approaching threat, is an ecological metric of cost–benefit functions of escape decisions. We adapted the FID paradigm to investigate how fast- or slow-attacking “virtual predators” constrain escape decisions. We show that rapid escape decisions rely on “reactive fear” circuits in the periaqueductal gray and midcingulate cortex (MCC), while protracted escape decisions, defined by larger buffer zones, were associated with “cognitive fear” circuits, which include posterior cingulate cortex, hippocampus, and the ventromedial prefrontal cortex, circuits implicated in more complex information processing, cognitive avoidance strategies, and behavioral flexibility. Using a Bayesian decision-making model, we further show that optimization of escape decisions under rapid flight were localized to the MCC, a region involved in adaptive motor control, while the hippocampus is implicated in optimizing decisions that update and control slower escape initiation. These results demonstrate an unexplored link between defensive survival circuits and their role in adaptive escape decisions. 
    more » « less
  4. ABSTRACT QuestionsThe detection and interpretation of ecological processes are strongly influenced by the spatial scale at which studies are conducted. Scale terms (e.g., ‘local’ or ‘regional’) are frequently used to denote study scale and imply that studies using the same scale term should be directly comparable. However, whether the area encompassed by a particular scale term is consistent across studies remains unclear. LocationGlobal. MethodsWe reviewed 385 papers in plant community ecology and analysed 962 spatial scale terms and their reported areas. We tested whether variation in the use of individual scale terms could be explained by habitat, type of study or geographic region, and virtually sampled a simulated plant community to demonstrate the consequences of this variation for calculating common biodiversity metrics. ResultsSingle scale terms covered areas that vary by an average of 4.7 orders of magnitude, with significant overlap between distinct scale terms. Though this variation could be partly explained by habitat type (e.g., scale terms cover larger areas in forests than grasslands), we still found large variability (3.8 orders of magnitude) in the use of single terms within habitats. We also found overall high consistency (but still high variability) in the use of scale terms across geographic regions and study types. Our community simulation showed that Shannon's and Simpson's indices are highly sensitive to this variation, especially at finer spatial scales, suggesting that variation in the use of individual scale terms has major consequences for synthesising biodiversity trends. ConclusionsWhile terminology can make it appear that studies are directly comparable, they may cover vastly different areas and capture different ecological processes. Spatial scales should be reported in a standardised fashion by clearly stating the actual study size in abstracts and methods, and inconsistencies in scale term use should be accounted for when synthesising previous research. 
    more » « less
  5. ABSTRACT It has recently been recognised that populations are rarely in demographic equilibrium, but rather in a ‘transient’ state. To examine how transient dynamics influence our empirical understanding of the links between changes in demographic rates and population growth, we conducted a 32‐year study of Columbian ground squirrels. The population increased rapidly for 10 years, followed by a 2‐year crash, and a gradual 19‐year recovery. Transient life table response experiment (LTRE) analysis showed that demographic stochasticity accounted for approximately one‐fourth of the variation in population growth, leaving the majority to be explained by environmental influences. These relatively small rodents appeared to have a slow pace of life. But unlike the general pattern for large mammals with slow life histories, ground squirrel survival did not exhibit low variation associated with environmental ‘buffering’; instead, survival varied substantially over time and contributed substantially (78%) to changes in abundance over the long‐term study, with minor contributions from reproduction and unstable stage structure. 
    more » « less