skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Lost in Space: When Spatial Scale Terms Blur Actual Study Size in Plant Community Ecology
ABSTRACT QuestionsThe detection and interpretation of ecological processes are strongly influenced by the spatial scale at which studies are conducted. Scale terms (e.g., ‘local’ or ‘regional’) are frequently used to denote study scale and imply that studies using the same scale term should be directly comparable. However, whether the area encompassed by a particular scale term is consistent across studies remains unclear. LocationGlobal. MethodsWe reviewed 385 papers in plant community ecology and analysed 962 spatial scale terms and their reported areas. We tested whether variation in the use of individual scale terms could be explained by habitat, type of study or geographic region, and virtually sampled a simulated plant community to demonstrate the consequences of this variation for calculating common biodiversity metrics. ResultsSingle scale terms covered areas that vary by an average of 4.7 orders of magnitude, with significant overlap between distinct scale terms. Though this variation could be partly explained by habitat type (e.g., scale terms cover larger areas in forests than grasslands), we still found large variability (3.8 orders of magnitude) in the use of single terms within habitats. We also found overall high consistency (but still high variability) in the use of scale terms across geographic regions and study types. Our community simulation showed that Shannon's and Simpson's indices are highly sensitive to this variation, especially at finer spatial scales, suggesting that variation in the use of individual scale terms has major consequences for synthesising biodiversity trends. ConclusionsWhile terminology can make it appear that studies are directly comparable, they may cover vastly different areas and capture different ecological processes. Spatial scales should be reported in a standardised fashion by clearly stating the actual study size in abstracts and methods, and inconsistencies in scale term use should be accounted for when synthesising previous research.  more » « less
Award ID(s):
1831944
PAR ID:
10659622
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Vegetation Science
Volume:
36
Issue:
3
ISSN:
1100-9233
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT AimHalting widespread biodiversity loss will require detailed information on species' trends and the habitat conditions correlated with population declines. However, constraints on conventional monitoring programs and commonplace approaches for trend estimation can make it difficult to obtain such information across species' ranges. Here, we demonstrate how recent developments in machine learning and model interpretation, combined with data sources derived from participatory science, enable landscape‐scale inferences on the habitat correlates of population trends across broad spatial extents. LocationWorldwide, with a case study in the western United States. MethodsWe used interpretable machine learning to understand the relationships between land cover and spatially explicit bird population trends. Using a case study with three passerine birds in the western U.S. and spatially explicit trends derived from eBird data, we explore the potential impacts of simulated land cover modification while evaluating potential co‐benefits among species. ResultsOur analysis revealed complex, non‐linear relationships between land cover variables and species' population trends as well as substantial interspecific variation in those relationships. Areas with the most positive impacts from a simulated land cover modification overlapped for two species, but these changes had little effect on the third species. Main ConclusionsThis framework can help conservation practitioners identify important relationships between species trends and habitat while also highlighting areas where potential modifications to the landscape could bring the biggest benefits. The analysis is transferable to hundreds of species worldwide with spatially explicit trend estimates, allowing inference across multiple species at scales that are tractable for management to combat species declines. 
    more » « less
  2. Addressing the ongoing biodiversity crisis requires identifying the winners and losers of global change. Species are often categorized based on how they respond to habitat loss; for example, species restricted to natural environments, those that most often occur in anthropogenic habitats, and generalists that do well in both. However, species might switch habitat affiliations across time and space: an organism may venture into human-modified areas in benign regions but retreat into thermally buffered forested habitats in areas with high temperatures. Here, we apply community occupancy models to a large-scale camera trapping dataset with 29 mammal species distributed over 2,485 sites across the continental United States, to ask three questions. First, are species’ responses to forest and anthropogenic habitats consistent across continental scales? Second, do macroclimatic conditions explain spatial variation in species responses to land use? Third, can species traits elucidate which taxa are most likely to show climate-dependent habitat associations? We found that all species exhibited significant spatial variation in how they respond to land-use, tending to avoid anthropogenic areas and increasingly use forests in hotter regions. In the hottest regions, species occupancy was 50% higher in forested compared to open habitats, whereas in the coldest regions, the trend reversed. Larger species with larger ranges, herbivores, and primary predators were more likely to change their habitat affiliations than top predators, which consistently affiliated with high forest cover. Our findings suggest that climatic conditions influence species’ space-use and that maintaining forest cover can help protect mammals from warming climates. 
    more » « less
  3. Abstract BackgroundStudies that aim to understand the processes that generate and organize plant diversity in nature have a long history in ecology. Among these, the study of plant–plant interactions that take place indirectly via pollinator choice and floral visitation has been paramount. Current evidence, however, indicates that plants can interact more directly via heterospecific pollen (HP) transfer and that these interactions are ubiquitous and can have strong fitness effects. The intensity of HP interactions can also vary spatially, with important implications for floral evolution and community assembly. ScopeInterest in understanding the role of heterospecific pollen transfer in the diversification and organization of plant communities is rapidly rising. The existence of spatial variation in the intensity of species interactions and their role in shaping patterns of diversity is also well recognized. However, after 40 years of research, the importance of spatial variation in HP transfer intensity and effects remains poorly known, and thus we have ignored its potential in shaping patterns of diversity at local and global scales. Here, I develop a conceptual framework and summarize existing evidence for the ecological and evolutionary consequences of spatial variation in HP transfer interactions and outline future directions in this field. ConclusionsThe drivers of variation in HP transfer discussed here illustrate the high potential for geographic variation in HP intensity and its effects, as well as in the evolutionary responses to HP receipt. So far, the study of pollinator-mediated plant–plant interactions has been almost entirely dominated by studies of pre-pollination interactions even though their outcomes can be influenced by plant–plant interactions that take place on the stigma. It is hence critical that we fully evaluate the consequences and context-dependency of HP transfer interactions in order to gain a more complete understanding of the role that plant–pollinator interactions play in generating and organizing plant biodiversity. 
    more » « less
  4. Abstract Distribution models are widely used to understand landscape biodiversity patterns, facilitate evolutionary and ecological studies, and for making informed conservation decisions. While it is common to examine consequences of climate change, impacts of land use on distributions, a major factor in limiting ranges and corridors between populations, are less well understood. Here, we use distribution models to quantify changes in biodiversity due to land use for Michigan floral assemblages. We leveraged a distribution model dataset (1930 species) integrated with dated phylogenetic information and USGS land use maps to parse Michigan areas with unsuitable habitat. Additionally, we quantify the degree of high-quality habitat lost for each species, identifying those most strongly impacted by land use changes. Approx. 39% of Michigan terrestrial habitat fell within “unsuitable” land use categories. Sites predicted to harbor the most species based on climatic variables were those sites that lost the greatest proportion due to land use changes. Further, excluded sites were preferentially those composed of more phylogenetically even communities. Overall, the impact of land use changes on community species richness was the preferential loss of sites with the predicted highest biodiversity. For phylodiversity metrics, land use changes increased the degree of community phylogenetic clustering. This results in overall decreased phylodiversity, leading to assemblages less equipped to respond to rapid climatic changes. Our results confirm land use to be a major, but somewhat overlooked, factor impacting local diversity dynamics and illustrate how local-scale land use impacts regional-scale richness and phylodiversity patterns, likely leading to increased community fragility. 
    more » « less
  5. Abstract AimWe investigate geographic patterns across taxonomic, ecological and phylogenetic diversity to test for spatial (in)congruency and identify aggregate diversity hotspots in relationship to present land use and future climate. Simulating extinctions of imperilled species, we demonstrate where losses across diversity dimensions and geography are predicted. LocationNorth America. Time periodPresent day, future. Major taxa studiedRodentia. MethodsUsing geographic range maps for rodent species, we quantified spatial patterns for 11 dimensions of diversity: taxonomic (species, range weighted), ecological (body size, diet and habitat), phylogenetic (mean, variance, and nearest‐neighbour patristic distances, phylogenetic distance and genus‐to‐species ratio) and phyloendemism. We tested for correlations across dimensions and used spatial residual analyses to illustrate regions of pronounced diversity. We aggregated diversity hotspots in relationship to predictions of land‐use and climate change and recalculated metrics following extinctions of IUCN‐listed imperilled species. ResultsTopographically complex western North America hosts high diversity across multiple dimensions: phyloendemism and ecological diversity exceed predictions based on taxonomic richness, and phylogenetic variance patterns indicate steep gradients in phylogenetic turnover. An aggregate diversity hotspot emerges in the west, whereas spatial incongruence exists across diversity dimensions at the continental scale. Notably, phylogenetic metrics are uncorrelated with ecological diversity. Diversity hotspots overlap with land‐use and climate change, and extinctions predicted by IUCN status are unevenly distributed across space, phylogeny or ecological groups. Main conclusionsComparison of taxonomic, ecological and phylogenetic diversity patterns for North American rodents clearly shows the multifaceted nature of biodiversity. Testing for geographic patterns and (in)congruency across dimensions of diversity facilitates investigation into underlying ecological and evolutionary processes. The geographic scope of this analysis suggests that several explicit regional challenges face North American rodent fauna in the future. Simultaneous consideration of multi‐dimensional biodiversity allows us to assess what critical functions or evolutionary history we might lose with future extinctions and maximize the potential of our conservation efforts. 
    more » « less