skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local Empirical Modeling of NmF2 Using Ionosonde Observations and the FISM2 Solar EUV Model
Abstract Local empirical models of the F2 layer peak electron density (NmF2) are developed for 43 low‐ middle latitude ionosonde stations using auto‐scaled data from Lowell GIRO data center and manually scaled data from World Data Center for Ionosphere and Space Weather. Data coverage at these stations ranges from a few years to up to 6 decades. Flare Irradiance Spectral Model index version 2 (FISM2) and ap3 index are used to parametrize the solar extreme ultraviolet (EUV) flux and geomagnetic activity dependence of NmF2. Learning curves suggest that approximately 8 years of data coverage is required to constrain the solar activity dependence of NmF2. Output of local models altogether captures well known anomalies of the F2 ionospheric layer. Performance metrics demonstrate that the model parametrized using FISM2 has better accuracy than a similarly parametrized model with F10.7, as well as than the IRI‐2020 model. Skill score metrics indicate that the FISM2 based model outperforms F10.7 model at all solar activity levels. The improved accuracy of model with FISM2 over F10.7 is due to better representation of solar rotation by FISM2, and due to its performance at solar extremum. Application of singular spectrum analysis to model output reveals that solar rotation contributes to about 2%–3% of the variance in NmF2 data and FISM2 based model, while F10.7 based models overestimate the strength of solar rotation to be at 4%–7%. At solar extremum, both F10.7‐based model and IRI‐2020 tend to overestimate the NmF2 while FISM2 provides the most accurate prediction out of three.  more » « less
Award ID(s):
2411430 1952737 1950348
PAR ID:
10575087
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
129
Issue:
9
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ionospheric day‐to‐day variability is essential for understanding the space environment, while it is still challenging to properly quantify and forecast. In the present work, the day‐to‐day variability of F2 layer peak electron densities (NmF2) is examined from both observational and modeling perspectives. Ionosonde data over Wuhan station (30.5°N, 114.5°E; 19.3°N magnetic latitude) are compared with simulations from the specific dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (SD‐WACCM‐X) and the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM) in 2009 and 2012. Both SD‐WACCM‐X and TIEGCM are driven by the realistic 3 h geomagnetic index and daily solar input, and the former includes self‐consistently solved physics and chemistry in the lower atmosphere. The correlation coefficient between observations and SD‐WACCM‐X simulations is much larger than that of the TIEGCM simulations, especially during dusk in 2009 and nighttime in 2012. Both the observed and SD‐WACCM‐X simulated day‐to‐day variability of NmF2 reveal a similar day‐night dependence in 2012 that increases large during the nighttime and decreases during the daytime, and shows favorable consistency of daytime variability in 2009. Both the observations and SD‐WACCM‐X simulations also display semiannual variations in nighttime NmF2 variability, although the month with maximum variability is slightly different. However, TIEGCM does not reproduce the day‐night dependence or the semiannual variations well. The results emphasize the necessity for realistic lower atmospheric perturbations to characterize ionospheric day‐to‐day variability. This work also provides a validation of the SD‐WACCM‐X in terms of ionospheric day‐to‐day variability. 
    more » « less
  2. Airglow intensity-weighted temperature variations induced by the CO2 increase, solar cycle variation (F10.7 as a proxy) and geomagnetic activity (Ap index as a proxy) in the Mesosphere and Lower Thermosphere (MLT) region were simulated to quantitatively assess their influences on airglow temperatures. Two airglow models, MACD-00 and OHCD-00, were used to simulate the O(1S) greenline, O2(0,1) atmospheric band, and OH(8,3) airglow temperature variations induced by these influences to deduce the trends. Our results show that all three airglow temperatures display a linear trend of ~−0.5 K/decade, in response to the increase of CO2 gas concentration. The airglow temperatures were found to be highly correlated with Ap index, and moderately correlated with F10.7, with the OH temperature showing an anti-correlation. The F10.7 and Ap index trends were found to be ~−0.7 ± 0.28 K/100SFU and ~−0.1 ± 0.02 K/nT in the OH temperature, 4.1 ± 0.7 K/100SFU and ~0.6 ± 0.03 K/nT in the O2 temperature and ~2.0 ± 0.6 K/100SFU and ~0.4 ± 0.03 K/nT in the O1S temperature. These results indicate that geomagnetic activity can have a rather significant effect on the temperatures that had not been looked at previously. 
    more » « less
  3. Abstract We model the electron density in the topside of the ionosphere with an improved machine learning (ML) model and compare it to existing empirical models, specifically the International Reference Ionosphere (IRI) and the Empirical‐Canadian High Arctic Ionospheric Model (E‐CHAIM). In prior work, an artificial neural network (NN) was developed and trained on two solar cycles worth of Defense Meteorological Satellite Program data (113 satellite‐years), along with global drivers and indices to predict topside electron density. In this paper, we highlight improvements made to this NN, and present a detailed comparison of the new model to E‐CHAIM and IRI as a function of location, geomagnetic condition, time of year, and solar local time. We discuss precision and accuracy metrics to better understand model strengths and weaknesses. The updated neural network shows improved mid‐latitude performance with absolute errors lower than the IRI by 2.5 × 109to 2.5 × 1010e/m3, modestly improved performance in disturbed geomagnetic conditions with absolute errors reduced by about 2.5 × 109 e/m3at high Kp compared to the IRI, and high Kp percentage errors reduced by >50% when compared to E‐CHAIM. 
    more » « less
  4. Abstract A technique has recently been developed for tracking short-term spectral variations in Galactic cosmic rays (GCRs) using data from a single neutron monitor (NM), by collecting histograms of the time delay between successive neutron counts and extracting the leader fractionLas a proxy of the spectral index. Here we analyzeLfrom four Antarctic NMs from 2015 March to 2023 September. We have calibratedLfrom the South Pole NM with respect to a daily spectral index determined from published data of GCR proton fluxes during 2015–2019 from the Alpha Magnetic Spectrometer (AMS-02) on board the International Space Station. Our results demonstrate a robust correlation between the leader fraction and the spectral index fit over the rigidity range 2.97–16.6 GV for AMS-02 data, with uncertainty of 0.018 in the daily spectral index as inferred fromL. In addition to the 11 yr solar activity cycle, a wavelet analysis confirms a 27 day periodicity in the GCR flux and spectral index corresponding to solar rotation, especially near sunspot minimum, while the flux occasionally exhibits a strong harmonic at 13.5 days. The magnetic field component along a nominal Parker spiral (i.e., the magnetic sector structure) is a strong determinant of such spectral and flux variations, with the solar wind speed exerting an additional, nearly rigidity-independent influence on flux variations. Our investigation affirms the capability of ground-based NM stations to accurately and continuously monitor cosmic-ray spectral variations over the long-term future. 
    more » « less
  5. null (Ed.)
    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements at low latitudes from 89 km to 97 km were used to derive the F10.7 and Ap index trends, and the trends were compared to model simulations. The annual mean nonzonal (e.g., at the model simulation location at 18° N, 290° E) SABER temperature showed a good-to-moderate correlation with F10.7, with a trend of 4.5–5.3 K/100 SFU, and a moderate-to-weak correlation with the Ap index, with a trend of 0.1–0.3 K/nT. The annual mean zonal mean SABER temperature was found to be highly correlated with the F10.7, with a similar trend, and moderately correlated with the Ap index, with a trend in a similar range. The correlation with the Ap index was significantly improved with a slightly larger trend when the zonal mean temperature was fitted with a 1-year backward shift in the Ap index. The F10.7 (Ap index) trends in the simulated O2 and the O(1S) temperature were smaller (larger) than those in the annual mean nonzonal mean SABER temperature. The trends from the simulations were better compared to those in the annual mean zonal mean temperature. The comparisons were even better when compared to the trend results obtained from fitting with a backward shift in the Ap index. 
    more » « less