Abstract Let$$\mathbb {F}_q^d$$ be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ and a fixed nonzero$$t\in \mathbb {F}_q$$ , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ , where$$h_y:E\rightarrow \{0,1\}$$ is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ that if$$|E|\ge Cq^{\frac{11}{4}}$$ andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ isdwhenever$$E\subseteq \mathbb {F}_q^d$$ with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ .
more »
« less
Abelian varieties of prescribed order over finite fields
Abstract Given a prime powerqand$$n \gg 1$$ , we prove that every integer in a large subinterval of the Hasse–Weil interval$$[(\sqrt{q}-1)^{2n},(\sqrt{q}+1)^{2n}]$$ is$$\#A({\mathbb {F}}_q)$$ for some ordinary geometrically simple principally polarized abelian varietyAof dimensionnover$${\mathbb {F}}_q$$ . As a consequence, we generalize a result of Howe and Kedlaya for$${\mathbb {F}}_2$$ to show that for each prime powerq, every sufficiently large positive integer is realizable, i.e.,$$\#A({\mathbb {F}}_q)$$ for some abelian varietyAover$${\mathbb {F}}_q$$ . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse–Weil interval. A separate argument determines, for fixedn, the largest subinterval of the Hasse–Weil interval consisting of realizable integers, asymptotically as$$q \rightarrow \infty $$ ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if$$q \le 5$$ , then every positive integer is realizable, and for arbitraryq, every positive integer$$\ge q^{3 \sqrt{q} \log q}$$ is realizable.
more »
« less
- PAR ID:
- 10575670
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Mathematische Annalen
- Volume:
- 392
- Issue:
- 1
- ISSN:
- 0025-5831
- Format(s):
- Medium: X Size: p. 1167-1202
- Size(s):
- p. 1167-1202
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fix a positive integernand a finite field$${\mathbb {F}}_q$$ . We study the joint distribution of the rank$${{\,\mathrm{rk}\,}}(E)$$ , then-Selmer group$$\text {Sel}_n(E)$$ , and then-torsion in the Tate–Shafarevich group Equation missing<#comment/>asEvaries over elliptic curves of fixed height$$d \ge 2$$ over$${\mathbb {F}}_q(t)$$ . We compute this joint distribution in the largeqlimit. We also show that the “largeq, then large height” limit of this distribution agrees with the one predicted by Bhargava–Kane–Lenstra–Poonen–Rains.more » « less
-
Abstract We construct an example of a group$$G = \mathbb {Z}^2 \times G_0$$ for a finite abelian group $$G_0$$ , a subsetEof $$G_0$$ , and two finite subsets$$F_1,F_2$$ of G, such that it is undecidable in ZFC whether$$\mathbb {Z}^2\times E$$ can be tiled by translations of$$F_1,F_2$$ . In particular, this implies that this tiling problem isaperiodic, in the sense that (in the standard universe of ZFC) there exist translational tilings ofEby the tiles$$F_1,F_2$$ , but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in $$\mathbb {Z}^2$$ ). A similar construction also applies for$$G=\mathbb {Z}^d$$ for sufficiently large d. If one allows the group$$G_0$$ to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles.more » « less
-
Abstract We study holomorphic mapsFfrom a smooth Levi non-degenerate real hypersurface$$ M_{\ell }\subset {\mathbb {C}}^n $$ into a hyperquadric$$ {\mathbb {H}}_{\ell '}^N $$ with signatures$$ \ell \le (n-1)/2 $$ and$$ \ell '\le (N-1)/2,$$ respectively. Assuming that$$ N - n < n - 1,$$ we prove that if$$ \ell = \ell ',$$ thenFis either CR transversal to$$ {\mathbb {H}}_{\ell }^N $$ at every point of$$ M_{\ell },$$ or it maps a neighborhood of$$ M_{\ell } $$ in$$ {\mathbb {C}}^n $$ into$$ {\mathbb {H}}_{\ell }^N.$$ Furthermore, in the case where$$ \ell ' > \ell ,$$ we show that ifFis not CR transversal at$$0\in M_\ell ,$$ then it must be transversally flat. The latter is best possible.more » « less
An official website of the United States government
