skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The stability of frictional sliding on dip-slip and finite length faults
SUMMARY This paper examines the linear stability of sliding on faults embedded in a 2-D elastic medium that obey rate and state friction and have a finite length and/or are near a traction-free surface. Results are obtained using a numerical technique that allows for analysis of systems with geometrical complexity and heterogeneous material properties; however only systems with homogeneous frictional and material properties are examined. Some analytical results are also obtained for the special case of a fault that is parallel to a traction-free surface. For velocity-weakening faults with finite length, there is a critical fault length $$L^{*}$$ for unstable sliding that is analogous to the critical wavelength $$h^{*}$$ that is usually derived from infinite fault systems. Faults longer than $$L^{*}$$ are linearly unstable to perturbations of any length. On vertical strike-slip faults or faults in a full-space $$L^{*} \approx h^{*}/e$$, where e is Euler’s number. For dip-slip faults near a traction-free surface $$L^{*} \le h^{*}/e$$ and is a function of dip angle $$\beta$$, burial depth d of the fault’s up-dip edge and friction coefficient. In particular, $$L^{*}$$ is at least an order of magnitude smaller than $$h^{*}$$ on shallowly dipping ($$\beta < 10^\circ$$) faults that intersect the traction-free surface. Additionally, $$L^{*} \approx h^{*}/e$$ on dip-slip faults with burial depths $$d \ge h^{*}$$. For sliding systems that can be treated as a thin layer, such as landslides, glaciers or ice streams, $$L^{*} = h^{*}/2$$. Finally, conditions are established for unstable sliding on infinitely-long, velocity-strengthening faults that are parallel to a traction-free surface.  more » « less
Award ID(s):
2245540
PAR ID:
10575938
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
241
Issue:
2
ISSN:
0956-540X
Format(s):
Medium: X Size: p. 826-839
Size(s):
p. 826-839
Sponsoring Org:
National Science Foundation
More Like this
  1. Abundant heterogeneity has been documented on faults in nature across a wide range of length scales, including structural, mineralogical, and roughness variations. The role of complex heterogeneity on fault mechanics and frictional stability is not well established, and experiments investigating heterogeneity have typically incorporated a single source of heterogeneity. Here, we conduct rock friction experiments on rough, bimaterial faults that are creeping, or steadily sliding, to explore the role of lithological heterogeneity on fault mechanics and stability. When strong asperities juxtapose weak gouge, stable sliding occurs with a low friction coefficient, µ. Encounters of strong diabase asperities on talc gouge lined faults initiate dramatic increases in µ and transitions to unstable sliding characterized by frequent stick-slip events (StSE). Seismic moments and stress drops of StSE decrease with increasing asperity abundance. Stress is concentrated at asperities during encounters, increasing with decreasing asperity abundance and leading to extensive mechanical damage. Interactions between strong, velocity weakening asperities provide a model to explain the nucleation of seismic and aseismic slip events on nominally stable, creeping faults. 
    more » « less
  2. Abstract Many low-angle normal faults (dip ≤30°) accommodate tens of kilometers of crustal extension, but their mechanics remain contentious. Most models for low-angle normal fault slip assume vertical maximum principal stress σ1, leading many authors to conclude that low-angle normal faults are poorly oriented in the stress field (≥60° from σ1) and weak (low friction). In contrast, models for low-angle normal fault formation in isotropic rocks typically assume Coulomb failure and require inclined σ1 (no misorientation). Here, a data-based, mechanical-tectonic model is presented for formation of the Whipple detachment fault, southeastern California. The model honors local and regional geologic and tectonic history and laboratory friction measurements. The Whipple detachment fault formed progressively in the brittle-plastic transition by linking of “minidetachments,” which are small-scale analogs (meters to kilometers in length) in the upper footwall. Minidetachments followed mylonitic anisotropy along planes of maximum shear stress (45° from the maximum principal stress), not Coulomb fractures. They evolved from mylonitic flow to cataclasis and frictional slip at 300–400 °C and ∼9.5 km depth, while fluid pressure fell from lithostatic to hydrostatic levels. Minidetachment friction was presumably high (0.6–0.85), based upon formation of quartzofeldspathic cataclasite and pseudotachylyte. Similar mechanics are inferred for both the minidetachments and the Whipple detachment fault, driven by high differential stress (∼150–160 MPa). A Mohr construction is presented with the fault dip as the main free parameter. Using “Byerlee friction” (0.6–0.85) on the minidetachments and the Whipple detachment fault, and internal friction (1.0–1.7) on newly formed Reidel shears, the initial fault dips are calculated at 16°–26°, with σ1 plunging ∼61°–71° northeast. Linked minidetachments probably were not well aligned, and slip on the evolving Whipple detachment fault probably contributed to fault smoothing, by off-fault fracturing and cataclasis, and to formation of the fault core and fractured damage zone. Stress rotation may have occurred only within the mylonitic shear zone, but asymmetric tectonic forces applied to the brittle crust probably caused gradual rotation of σ1 above it as a result of: (1) the upward force applied to the base of marginal North America by buoyant asthenosphere upwelling into an opening slab-free window and/or (2) basal, top-to-the-NE shear traction due to midcrustal mylonitic flow during tectonic exhumation of the Orocopia Schist. The mechanical-tectonic model probably applies directly to low-angle normal faults of the lower Colorado River extensional corridor, and aspects of the model (e.g., significance of anisotropy, stress rotation) likely apply to formation of other strong low-angle normal faults. 
    more » « less
  3. Abstract Many natural faults are believed to consist of velocity weakening (VW) patches surrounded by velocity strengthening (VS) sections. Numerical studies routinely employ this framework to study earthquake sequences including repeating earthquakes. In this laboratory study, we made a VW asperity, of lengthL, from a bare Poly(methyl methacrylate) PMMA frictional interface and coated the surrounding interface with Teflon to make VS fault sections. Behavior of this isolated asperity was studied as a function ofL(ranging from 100 to 400 mm) and the critical nucleation length, , which is inversely proportional to the applied normal stress (2–16 MPa). Consistent with recent numerical simulations, we observed aseismic slip for  < 2, periodic slip for 2 <  < 6, and non‐periodic slip for 10 < . Furthermore, we compared the experiments whereLwas contained by VS material to standard stick‐slip events whereLwas bounded by free surfaces (i.e.,L = the total sample length). The free surface case produced ∼10 times larger slip during stick‐slip events compared to the contained fault ruptures, even with identical . This disparity highlights how standard, complete‐rupture stick‐slip events differ from contained events expected in nature, due to both the free surface conditions and the heterogeneous normal stress along the fault near the free ends, as confirmed by Digital Image Correlation analysis. This study not only introduces the Teflon coating experimental technique for containing laboratory earthquake ruptures, but also highlights the utility of as a predictive parameter for earthquake behavior. 
    more » « less
  4. Abstract While the notion that injecting fluids into the subsurface can reactivate faults by reducing frictional resistance is well established, the ensuing evolution of the slip is still poorly understood. What controls whether the induced slip remains stable and confined to the fluid‐affected zone or accelerates into a runaway earthquake? Are there observable indicators of the propensity to earthquakes before they happen? Here, we investigate these questions by modeling a unique fluid‐injection experiment on a natural fault with laboratory‐derived friction laws. We show that a range of fault models with diverging stability with sustained injection reproduce the slip measured during pressurization. Upon depressurization, however, the most unstable scenario departs from the observations, suggesting that the fault is relatively stable. The models could be further distinguished with optimized depressurization tests or spatially distributed monitoring. Our findings indicate that avoiding injection near low‐residual‐friction faults and depressurizing during slip acceleration could help prevent large‐scale earthquakes. 
    more » « less
  5. Abstract Heterogeneity in geometry, stress, and material properties is widely invoked to explain the observed spectrum of slow earthquake phenomena. However, the effects of length scale of heterogeneity on macroscopic fault sliding behavior remain underexplored. We investigate this question for subduction megathrusts, via linear stability analysis and quasi‐dynamic simulations of slip on a dipping fault characterized by rate‐and‐state friction. Frictional heterogeneity is imposed through alternating velocity‐strengthening and velocity‐weakening (VW) patches, over length scales spanning from those representative of basement relief (several km) to the entrainment of contrasting lithologies (100s of m). The resulting fault behavior is controlled by: (a) the average frictional properties of the fault, and (b) the size of VW blocks relative to a critical length scale. Reasonable ranges of these properties yield sliding behaviors spanning from stable sliding, to slow and seismic slip events that are confined within VW blocks or propagate along the entire fault. 
    more » « less